Abstract:With the rapid development of the fourth generation (4G) wireless communication system, the envelope of radio frequency signal is featured with continuously increasing bandwidth and peak-to-average power ratio. It would worsen the efficiency of the power amplifier supplied by a constant dc voltage. Envelope tracking (ET) technique is one of the potential approaches to greatly improve the efficiency of the power amplifier in wireless communication system, which contributes to energy conservation and pollution reduction. ET power supply is the key equipment in ET technique. It generally adopts the switch-linear hybrid (SLH) configuration, which integrates the advantages of high-bandwidth linear amplifier and high-efficiency switched-mode converter. In this paper, the high-bandwidth linear amplifier and high-efficiency switched-mode converter are introduced firstly. Then, series- and parallel-connections of SLH ET power supply are presented. After that, the series-parallel form SLH ET power supply is proposed to further reduce the power loss in the linear amplifier and to achieve a higher overall efficiency. Finally, the solutions are proposed to further increase the overall efficiency of SLH ET power supply, according to the optimization of step-wave provider, application of GaN devices, split-band for power spectrum of envelope signal, and effective control schemes.
阮新波, 金茜. 包络线跟踪电源技术综述[J]. 电工技术学报, 2017, 32(4): 1-11.
Ruan Xinbo, Jin Qian. A Review of Envelope Tracking Power Supply. Transactions of China Electrotechnical Society, 2017, 32(4): 1-11.
[1] Raab F H, Asbeck P, Cripps S, et al. RF and microwave power amplifier and transmitter techno- logies[J]. High Frequency Electronics, 2003, 2(3): 22-54. [2] Steve C C. RF Power amplifiers for wireless communications[M]. 2nd ed. Boston: Artech House, 2006. [3] Raab F H, Asbeck P, Cripps S, et al. RF and microwave power amplifier and transmitter tech- nologies[J]. High Frequency Electronics, 2003, 2(3): 22-54. [4] Envelope tracking: fuel injection for the RF front end[OL]. Available: http://www.nujira.com. [5] Nujira energy primer[OL]. Available: http://www. nujira.com. [6] Bathich K, Markos A Z, Wideband A. GaN Doherty amplifier with 35% fractional bandwidth[C]//Pro- ceedings of IEEE European Microwave Conference (EuMC), 2010: 1006-1009. [7] Yamamoto T, Kitahara T, Hiura S. 50% drain efficiency Doherty amplifier with optimized power range for W-CDMA signal[C]//Proceedings of IEEE Microwave Theory and Techniques Symposium (MTT-S), 2007: 1263-1266. [8] Esch J. High-efficiency Doherty power amplifiers: historical aspect and modern trends[C]//Proceedings of the IEEE, 2012, 100(12): 3187-3189. [9] Eer Raab F H, Sigmon B E, Myers R G, et al. L-band transmitter using Kahn EER technique[J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(12): 2220-2225. [10] Vasić M, Garcia O, Oliver J A, et al. Efficient and linear power amplifier based on envelope elimination and restoration[J]. IEEE Transactions on Power Elec- tronics, 2012, 27(1): 5-9. [11] Jungjoon K, Jungwhan S, Seunghoon J, et al. Optimization of envelope tracking power amplifier for base-station applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(4): 1620-1627. [12] Kimball D F, Jinho J, Chin H, et al. High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(11): 3848-3856. [13] Hoversten J, Popovic Z. Envelope tracking trans- mitter system analysis method[C]//Proceedings of IEEE Radio and Wireless Symposium (RWS), 2010: 180-183. [14] 赵世巍. 高性能小型化射频功率放大器研究[D]. 成都: 电子科技大学, 2011. [15] Kahn L R. Single sideband transmission by envelope elimination and restoration[C]//Proceedings of IRE, 1952: 803-806. [16] Energy saving for LTE networks and devices: the open ET alliance[W]. Available: http://www. nujira. com. [17] Wang Z. Envelope tracking power amplifiers for wireless communications[M]. Boston: Artech House, 2014. [18] TI Operational Amplifier Datasheet[W]. Available: http://www.ti.com/lit/ds/symlink/ths4012.pdf. [19] TI Operational Amplifier Datasheet[W]. Available: http://www.ti.com/lit/ds/symlink/ths4001.pdf. [20] Hoversten J, Schafer S, Roberg M, et al. Co-design of PA, supply, and signal processing for linear supply- modulated RF transmitter[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 2010-2020. [21] 童诗白, 华成英. 模拟电子技术基础[M]. 北京: 高等教育出版社, 2005. [22] Diaz D, Garcia O, Oliver J A, et al. Ripple cancellation technique applied to a synchronous buck converter to achieve a very high bandwidth and very high efficiency envelope amplifier[J]. IEEE Transa- ctions on Power Electronics, 2013, 29(6): 2892-2902. [23] Anderson D R, Cantrell W H. High-efficiency high-level modulator for use in dynamic envelope tracking CDMA RF power amplifiers[C]// Proceedings of IEEE Microwave Symposium Digest, 2001: 1509-1512. [24] Høyerby M C W, Andersen M A E. High-bandwidth, high-efficiency envelope tracking power supply for 40W RF power amplifier using paralleled band pass current sources[C]//Proceedings of IEEE Power Electronics Specialists Conference (PESC), 2005: 2804-2809. [25] Soto A, Oliver J A, Cobos J A, et al. Power supply for a radio transmitter with modulated supply voltage[C]//Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), 2004: 392-398. [26] Zhang Y, Rodriguez M, Maksimovic D. Output filter design in high-efficiency wide-bandwidth multi- phase Buck envelope amplifiers[C]//Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), 2015: 2026-2032. [27] Sung S, Hong S, Bang J, et al. 86.55% peak efficiency envelope modulator for 1.5W 10MHz LTE PA without AC coupling capacitor[C]//Proceedings of VLSI Circuits, 2015: 17-19. [28] Nicolas L G, David S, Christophe D, et al. Over 10MHz bandwidth envelope-tracking DC/DC con- verter for flexible high power GaN amplifiers[C]// Proceedings of IEEE MTT-S International Micro- wave Symposium Digest, 2011: 1-4. [29] Rodríguez M, Fernández-Miaja P, Rodríguez A, et al. A multiple-input digitally controlled buck converter for envelope tracking applications in radio frequency power amplifiers[J]. IEEE Transactions on Power Electronics, 2010, 25(2): 369-381. [30] Vasic M, García O, Oliver J A, et al. Multilevel power supply for high-efficiency RF amplifiers[J]. IEEE Transactions on Power Electronics, 2010, 25(4): 1078-1089. [31] Cheng P, Garcia O, Vasic M, et al. Minimum time control for multiphase Buck converter: analysis and application[J]. IEEE Transactions on Power Elec- tronics, 2014, 29(2): 958-967. [32] Xi H, Jin Q, Ruan X. Feed-forward scheme considering bandwidth limitation of operational amplifiers for envelope tracking power supply using series-connected composite configuration[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3915-3926. [33] Miaja P F, Rodriguez M, Rodriguez A, et al. A linear assisted DC/DC converter for envelope tracking and envelope elimination and restoration applications[J]. IEEE Transactions on Power Electronics, 2012, 27(7): 3302-3309. [34] Xi H, Jin Q, Ruan X, et al. Full feedforward of the output voltage to improve efficiency for envelope- tracking power supply using switch-linear hybrid configuration[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 451-456. [35] Hsia C, Zhu A, Yan J J, et al. Digitally assisted dual-switch high-efficiency envelope amplifier for envelope-tracking base-station power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(11): 2943-2952. [36] Wu P Y, Mok P K T. A two-phase switching hybrid supply modulator for RF power amplifiers with 9% efficiency improvement[J]. IEEE Journal of Solid State Circuits, 2010, 45(12): 2543-2556. [37] Vasic M, Garcia O, Oliver J A, et al. Theoretical efficiency limits of a serial and parallel linear- assisted switching converter as an envelope ampli- fier[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 719-728. [38] Hambley A R. Electronics[M]. 2nd ed. New Jersey: Prentice Hall, 2003. [39] Markowski P. Power supply providing ultrafast modulation of output voltage: US, 7859336B2[P]. 2007. [40] Jin Q, Ruan X, Ren X, et al. High efficiency switch-linear hybrid envelope-tracking power supply with step-wave approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5411-5421. [41] Wang Y, Jin Q, Ruan X. Optimized design of the multilevel converter in series-form switch-linear hybrid envelope-tracking power supply[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5451-5460. [42] Yan J J, Hsia C, Kimball D F, et al. GaN envelope tracking power amplifier with more than one octave carrier bandwidth[C]//Proceedings of IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2011: 1-4. [43] Cucak D, Vasic M, Garcia O, et al. Application of eGaN FETs for highly efficient radio frequency power amplifier[C]//Proceedings of IEEE Integrated Power Electronics Systems (CIPS), 2012: 1-6. [44] Zhang Y, Strydom J, Rooij M, et al. Envelope tracking GaN power supply for 4G cell phone base stations[C]//Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), 2016: 2292-2297. [45] Wang F, Kimball D F, Popp J D, et al. An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(12): 4086-4099. [46] Miaja P F, Rodriguez A, Sebastian J. Buck derived converters based on gallium nitride devices for envelope tracking applications[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 2084-2095.