Load Variation Effect on Performance of Class E Power Amplifier
Deng Sijian1,Tan Jianwen1,2,3,Liao Ruijin3,Ye fangwei1,Zeng Deping1,Liu Qingsong3
1. College of Biomedical Engineering Chongqing University of Medical Sciences Chongqing 400016 China; 2. Key Lab of Special Power Supply Chongqing Communication Institute Chongqing 400035 China; 3. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China
Abstract:In practical situation, the terminal load of class E power amplifier may deviate from the theoretical design values to make the operating characteristics changing, even be damaged. In this paper, the circuit parameters of the class E power amplifier is analyzed theorectically. The analytical relationships between parameters of output power, efficiency, drain voltage and load are obtained and are verified by Saber simulation and actual circuit test. The results show that the output power and the working efficiency are decreased when the load deviates from the optimal load. When the load decreases, the peak of switch drain voltage and current rise to increase the switch stress of voltage and current. The derived theoretical results can determine the allowable range of the load in class E power amplifier and provide important reference for circuit design and analysis of class E power amplifier in variable load condition.
邓思建,谭坚文,廖瑞金,叶方伟,曾德平,刘青松. E类功率放大器负载变化对工作特性的影响分析[J]. 电工技术学报, 2015, 30(4): 98-105.
Deng Sijian,Tan Jianwen,Liao Ruijin,Ye fangwei,Zeng Deping,Liu Qingsong. Load Variation Effect on Performance of Class E Power Amplifier. Transactions of China Electrotechnical Society, 2015, 30(4): 98-105.
[1] 曹韬, 吕立明. 高效率E类功放在遥测发射机中的应用[J]. 微波学报, 2012, 28(5): 56-60. Cao Tao, Lü Liming. Application of high efficiency class E power amplifier in telemetry transmitter[J]. Journal of Microwaves, 2012, 28(5): 56-60. [2] 林金海, 张耀升. 高频高压E类逆变电源[J]. 天津大学学报, 1998, 31(1): 125-128. Lin Jinhai, Zhang Yaosheng. High freqyency high voltage class E invertering power supply[J]. Journal of Tianjin University, 1988, 31(1): 125-128. [3] 王春芳, 徐勤超. 变频微波炉电源用LLC谐振变换器[J]. 电工技术学报, 2012, 27(6): 103-109. Wang Chunfang, Xu Qinchao. Study of LLC resonant converter for variable-frequence microwave oven power supply[J]. Transactions of China Electrotech- nical Society, 2012, 27(6): 103-109. [4] 王正仕, 楼珍丽, 陈辉明. 零电压双LLC谐振软开关超高频感应加热电源变换器[J]. 电工技术学报, 2007, 22(9): 99-106. Wang Zhengshi, Lou Zhenli, Chen Huiming. Zero voltage dual-LLC resonant soft switching converter for super high frequency induction heating power supplies[J]. Transactions of China Electrotechnical Society, 2007, 22(9): 99-106. [5] Wang G, Liu W, Sivaprakasam M, et al. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(10): 2109-2117. [6] 武军伟, 龚子平, 万显荣, 等. 基于简化实频方法的宽带天线阻抗匹配网络设计[J]. 电波科学学报, 2011, 26(2): 382-387. Wu Junwei, Gong Ziping Wan Xianrong, et al. Design of broadband antenna impedance matching network based on simplified real frequency technique[J]. Chinese Journal of Radio Science, 2011, 26(2): 382-387. [7] 朱旭, 朱义胜. 负载变化对设计二端口网络传输特性的影响[J]. 电子与信息学报, 2010, 32(1): 231-234. Zhu Xu, Zhu Yisheng. Transmission characteristics of two-port network terminated in varying load[J]. Journal of Electronics & Information Technology, 2010, 32(1): 231-234. [8] Liao R J, Tan J W, Wang H. Q-based design method for impedance matching network considering load variation and frequency drift[J]. Microelectronics Journal, 2011, 42(2): 403-408. [9] Ida I, Takada J, Toda T, et al. An adaptive impedance matching system for mobile communication antennas [C]. IEEE Proceedings of the Antennas and Propagation Society International Symposium, 2004, 2: 563-567. [10] Liao R J, Tan J W, Wang H, et al. Dynamic performance analysis of T network impedance matching[J]. Transac- tions on Circuit and Systems, 2012, 11(2): 33-42. [11] 曹韬, 何松柏, 游飞. 有限容值隔直电容逆E类功放的分析与设计[J]. 微波学报, 2010, 26(6): 65-70. Cao Tao, He Songbai, You Fei. Analysis and design of inverse class-E power amplifiers with finite DC blocking capacitance[J]. Journal of Microwaves, 2010, 26(6): 65-70. [12] 刘庆丰, 王华民, 冷朝霞, 等. 基于多电平逆变器的高频感应加热电源若干问题的研究[J]. 电工技术学报, 2007, 22(6): 82-88. Liu Qingfeng, Wang Huamin, Leng Zhaoxia, et al. Study of several problems for high frequency induction heating power supply based on multilevel inverter[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 82-88. [13] Suetsugu T, Kazimierczuk M. Steady-state behavior of class E amplifier outside designed conditions[C]. IEEE International Symposium on the Circuits and Systems, 2005, 1: 708-711. [14] Suetsugu T, Kazimierczuk M. Analysis of transient behavior of class E amplifier due to load variations [C]. 2011 IEEE Ninth International Conference on the Power Electronics and Drive Systems(PEDS), 2011: 600-603. [15] Suetsugu T, Kazimierczuk M K. Analysis of dynamic frequency response of class E amplifier[C]. IEEE International Symposium on the Circuits and Systems, 2009: 2866-2869. [16] Kazimierczuk M K. RF power amplifiers[M]. John Wiley & Sons Inc., 2008.