[1] 马伟明, 王东, 程思为, 等. 高性能电机系统的共性基础科学问题与技术发展前沿[J]. 中国电机工程学报, 2016, 36(8): 2025-2035.
Ma Weiming, Wang Dong, Cheng Siwei, et al.Common basic scientific problems and development of leading-edge technology of high performance motor system[J]. Proceedings of the CSEE, 2016, 36(8): 2025-2035.
[2] 高起兴, 王晓琳, 顾聪, 等. 基于多耦合特性的整体支撑式超高速微型永磁电机设计[J]. 电工技术学报, 2021, 36(14): 2989-2999.
Gao Qixing, Wang Xiaolin, Gu Cong, et al.Design of ultra high speed micro permanent magnet motor with integrated support type based on multi coupling characteristics[J]. Transactions of China Electro-technical Society, 2021, 36(14): 2989-2999.
[3] 罗玉涛, 卢若皓. 基于结构参数分级优化的电机电磁噪声抑制[J]. 电工技术学报, 2021, 36(14): 2957-2970.
Luo Yutao, Lu Ruohao.Hierarchical optimization of structural parameters for motor electromagnetic noise suppression[J]. Transactions of China Electrotech-nical Society, 2021, 36(14): 2957-2970.
[4] 邢军强, 汪明武, 孔莹莹. 基于流固耦合的永磁直驱风力发电机传热分析[J]. 电气技术, 2021, 22(1): 47-52.
Xing Junqiang, Wang Mingwu, Kong Yingying.Heat transfer analysis of permanent magnet direct drive wind generator based on fluid-solid coupling[J]. Electrical Engineering, 2021, 22(1): 47-52.
[5] Zhang Zhu, Liu Yunfan, Wang Jingyuan.Optimal design of multi-channel water cooled radiator for motor controller of new energy vehicle[J]. CES Transactions on Electrical Machines and Systems, 2022, 6(1): 87-94.
[6] 洪剑锋, 王善铭, 孙宇光, 等. 高模数电磁力对永磁电机电磁振动影响[J]. 电工技术学报, 2022, 37(10): 2446-2458.
Hong Jianfeng, Wang Shanming, Sun Yuguang, et al.The influence of high-order force on electromagnetic vibration of permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2446-2458.
[7] 易永胜. 基于协同近似和集合策略的多学科设计优化方法研究[D]. 武汉: 华中科技大学, 2019.
[8] 柳明星, 张恒, 张伟. 火星全球遥感探测器多学科建模与协同优化[J]. 航天返回与遥感, 2017, 38(5): 57-67.
Liu Mingxing, Zhang Heng, Zhang Wei.Multidis-ciplinary modeling and collaborative optimization of Mars global remote sensing probe[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(5): 57-67.
[9] 王健. MDO方法在水面舰船总体概念设计中的应用研究[D]. 北京: 中国舰船研究院, 2017.
[10] 王东辉. 导弹多学科集成方案设计系统及其关键技术研究[D]. 长沙: 国防科学技术大学, 2014.
[11] 罗文豪. 基于多学科协同优化理论的电力系统动态经济调度问题研究[D]. 广州: 华南理工大学, 2017.
[12] Lindh P, Tehrani M G, Lindh T, et al.Multidis-ciplinary design of a permanent-magnet traction motor for a hybrid bus taking the load cycle into account[J]. IEEE Transactions on Industrial Elec-tronics, 2016, 63(6): 3397-3408.
[13] Uzhegov N, Kurvinen E, Nerg J, et al.Multidis-ciplinary design process of a 6-slot 2-pole high-speed permanent-magnet synchronous machine[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 784-795.
[14] Ismagilov F R, Uzhegov N, Vavilov V E, et al.Multidisciplinary design of ultra-high-speed electrical machines[J]. IEEE Transactions on Energy Con-version, 2018, 33(3): 1203-1212.
[15] Kim H, Nerse C, Lee J, et al.Multidisciplinary analysis and multiobjective design optimization of a switched reluctance motor for improving sound quality[J]. IEEE Access, 7: 66020-66027.
[16] Zhang Fengge, Dai Rui, Liu Guangwei, et al.Design of HSIPMM based on multi-physics fields[J]. IET Electric Power Applications, 2018, 12(8): 1098-1103.
[17] Dong Baotian, Wang Kun, Han Bangcheng, et al.Thermal analysis and experimental validation of a 30kW 60000r/Min high-speed permanent magnet motor with magnetic bearings[J]. IEEE Access, 7: 92184-92192.
[18] Yamazaki K, Togashi Y.Shape optimization pro-cedure of interior permanent magnet motors con-sidering carrier harmonic losses caused by inverters[J]. IEEE Transactions on Magnetics, 2018, 54(3): 1-4.
[19] Zarko D, Stipetic S, Martinovic M, et al.Reduction of computational efforts in finite element-based per-manent magnet traction motor optimization[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1799-1807.
[20] Prieto B, Satrústegui M, Elósegui I, et al.Multi-disciplinary analysis of a 750kW PMSM for marine propulsion including shock loading response[J]. IET Electric Power Applications, 2020, 14(10): 1974-1983.
[21] Zhang Yue, Wang Huijun, Gerada C.Rotor eddy current loss and multiphysics fields analysis for a high-speed permanent magnet machine[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 5100-5111.
[22] Du Guanghui, Xu Wei, Zhu Jianguo, et al.Rotor stress analysis for high-speed permanent magnet machines considering assembly gap and temperature gradient[J]. IEEE Transactions on Energy Conversion, 2019, 34(4): 2276-2285.
[23] Yang Jiangtao, Liu Ping, Ye Caiyong, et al.Multidisciplinary design of high-speed solid rotor homopolar inductor machine for flywheel energy storage system[J]. IEEE Transactions on Trans-portation Electrification, 2021, 7(2): 485-496.
[24] López-Torres C, Garcia A, Riba J R, et al.Computationally efficient design and optimization approach of PMa-SynRM in frequent operating torque-speed range[J]. IEEE Transactions on Energy Conversion, 2018, 33(4): 1776-1786.
[25] López-Torres C, Garcia Espinosa A, Riba J R, et al.Design and optimization for vehicle driving cycle of rare-earth-free SynRM based on coupled lumped thermal and magnetic networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 196-205.
[26] 沈月芬, 刘旭. 考虑互感的多齿开关磁链永磁记忆电机的精确磁路模型[J]. 电工技术学报, 2022, 37(10): 2435-2445.
Shen Yuefen, Liu Xu.Accurate magnetic circuit model of multi-tooth switched flux permanent magnet memory machine considering the mutual indu-ctance[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2435-2445.
[27] Wu Shuai, Zhao Xiangyu, Li Xiao, et al.Preliminary design and optimization of toroidally wound limited angle servo motor based on a generalized magnetic circuit model[J]. IEEE Transactions on Magnetics, 2016, 52(9): 1-9.
[28] Zhu Z Q, Howe D.Instantaneous magnetic field distribution in permanent magnet brushless DC motors. Ⅳ. magnetic field on load[J]. IEEE Transa-ctions on Magnetics, 1993, 29(1): 152-158.
[29] Zhu Z Q, Howe D.Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Ⅲ. effect of stator slotting[J]. IEEE Transa-ctions on Magnetics, 1993, 29(1): 143-151.
[30] Zhu Z Q, Howe D.Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Ⅱ. armature-reaction field[J]. IEEE Transa-ctions on Magnetics, 1993, 29(1): 136-142.
[31] Zhu Z Q, Howe D, Bolte E, et al.Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Ⅰ. open-circuit field[J]. IEEE Transactions on Magnetics, 1993, 29(1): 124-135.
[32] 高锋阳, 齐晓东, 李晓峰, 等. 部分分段Halbach永磁同步电机优化设计[J]. 电工技术学报, 2021, 36(4): 787-800.
Gao Fengyang, Qi Xiaodong, Li Xiaofeng, et al.Optimization design of partially-segmented Halbach permanent magnet synchronous motor[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(4): 787-800.
[33] 张守首, 郭思源. 基于子域分析模型的实心转子感应电机磁场解析[J]. 电工技术学报, 2021, 36(20): 4285-4296.
Zhang Shoushou, Guo Siyuan.Analytical solution of magnetic field in solid rotor induction machine based on subdomain model[J]. Transactions of China Electrotechnical Society, 2021, 36(20): 4285-4296.
[34] 陈亮亮, 祝长生, 王萌. 碳纤维护套高速永磁电机热态转子强度[J]. 浙江大学学报(工学版), 2015, 49(1): 162-172.
Chen Liangliang, Zhu Changsheng, Wang Meng.Strength analysis for thermal carbon-fiber retaining rotor in high-speed permanent magnet machine[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(1): 162-172.
[35] 陈亮亮. 磁悬浮高速飞轮储能系统永磁电机转子强度分析及转子振动控制[D]. 杭州: 浙江大学, 2017.
[36] Rafiee V, Faiz J.Robust design of an outer rotor permanent magnet motor through six-sigma metho-dology using response surface surrogate model[J]. IEEE Transactions on Magnetics, 2019, 55(10): 1-10.
[37] 赵玫, 于帅, 邹海林, 等. 聚磁式横向磁通永磁直线电机的多目标优化[J]. 电工技术学报, 2021, 36(17): 3730-3740.
Zhao Mei, Yu Shuai, Zou Hailin, et al.Multi-objective optimization of transverse flux permanent magnet linear machine with the concentrated flux mover[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3730-3740.
[38] 李祥林, 李金阳, 杨光勇, 等. 电励磁双定子场调制电机的多目标优化设计分析[J]. 电工技术学报, 2020, 35(5): 972-982.
Li Xianglin, Li Jinyang, Yang Guangyong, et al.Multi-objective optimization analysis of electric-excitation double-stator field-modulated machine[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 972-982.
[39] Weidenholzer G, Silber S, Jungmayr G, et al.A flux-based PMSM motor model using RBF interpolation for time-stepping simulations[C]//IEEE International Electric Machines & Drives Conference, Chicago, IL, USA, 2013: 1418-1423.
[40] Parnianifard A, Azfanizam A S, Ariffin M K A, et al. Kriging-assisted robust black-box simulation optimi-zation in direct speed control of DC motor under uncertainty[J]. IEEE Transactions on Magnetics, 2018, 54(7): 1-10.
[41] Ahmed S, Grabher C, Kim H J, et al.Multifidelity surrogate assisted rapid design of transverse-flux permanent magnet linear synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7280-7289.
[42] Andrea S, Marco R, Terry A, et al.Elementary effects method in global sensitivity analysis the primer[M]. New Jersey: John Wiley & Sons Ltd, 2007.
[43] Andrea S, Marco R, Terry A, et al.Variance-based methods in global sensitivity analysis the primer[M]. New Jersey: John Wiley & Sons Ltd, 2007.
[44] Cacuci D G, Ionescu-Bujor M.A comparative review of sensitivity and uncertainty analysis of large-scale systems-Ⅱ: statistical methods[J]. Nuclear Science and Engineering, 2004, 147(3): 204-217.
[45] 何小龙, 白俊强, 李宇飞. 基于全局灵敏度分析的改进微分进化算法[J]. 西北工业大学学报, 2016, 34(3): 411-417.
He Xiaolong, Bai Junqiang, Li Yufei.A global sensitivity analysis enhanced differential evolution algorithm[J]. Journal of Northwestern Polytechnical University, 2016, 34(3): 411-417.
[46] Sobol I.Sensitivity analysis for non linear mathe-matical model[J]. Mathematical Modelling and Com-putational Experiment, 1993, 1(1): 407-414.
[47] Lei Gang, Liu Chengcheng, Zhu Jianguo, et al.Techniques for multilevel design optimization of permanent magnet motors[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1574-1584.
[48] Kim D Y, Nam J K, Jang G H.Reduction of magnetically induced vibration of a spoke-type IPM motor using magnetomechanical coupled analysis and optimization[J]. IEEE Transactions on Magnetics, 2013, 49(9): 5097-5105.
[49] Park Y U, Cho J H, Kim D K.Cogging torque reduction of single-phase brushless DC motor with a tapered air-gap using optimizing Notch size and position[J]. IEEE Transactions on Industry Appli-cations, 2015, 51(6): 4455-4463.
[50] 张建桃, 张铁民, 梁莉. 超声电机非线性建模和广义预测控制[J]. 电机与控制学报, 2011, 15(6): 50-56.
Zhang Jiantao, Zhang Tiemin, Liang Li.Nonlinear modeling and generalized predictive control of ultrasonic motor[J]. Electric Machines and Control, 2011, 15(6): 50-56.
[51] Duan Haibin, Gan Lu.Orthogonal multiobjective chemical reaction optimization approach for the brushless DC motor design[J]. IEEE Transactions on Magnetics, 2015, 51(1): 1-7.
[52] Semon A, Melcescu L, Craiu O, et al.Design optimization of the rotor of a V-type interior permanent magnet synchronous motor using response surface methodology[C]//IEEE 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 2019: 1-4.
[53] He Jingxiong, Li Guoli, Zhou Rui, et al.Optimization of permanent-magnet spherical motor based on Taguchi method[J]. IEEE Transactions on Magnetics, 2020, 56(2): 1-7.
[54] 季宁, 张卫星, 于洋洋, 等. 基于最优拉丁超立方抽样方法和NSGA-Ⅱ算法的注射成型多目标优化[J]. 工程塑料应用, 2020, 48(3): 72-77.
Ji Ning, Zhang Weixing, Yu Yangyang, et al.Multi-objective optimization of injection molding based on optimal Latin hypercube sampling method and NSGA-Ⅱ algorithm[J]. Engineering Plastics Appli-cation, 2020, 48(3): 72-77.
[55] Kim J B, Hwang K Y, Kwon B I.Optimization of two-phase in-wheel IPMSM for wide speed range by using the Kriging model based on Latin hypercube sampling[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1078-1081.
[56] Kim Y B, Choi H S, Koh C S, et al.A back EMF optimization of double layered large-scale BLDC motor by using hybrid optimization method[J]. IEEE Transactions on Magnetics, 2011, 47(5): 998-1001.
[57] Hong D K, Lee J Y, Woo B C, et al.Investigating a direct-drive PM type synchronous machine for turret application using optimization[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4491-4494.
[58] 张应山. 正交表的数据分析及其构造[D]. 上海: 华东师范大学, 2006.
[59] Cho S K, Jung K H, Choi J Y.Design optimization of interior permanent magnet synchronous motor for electric compressors of air-conditioning systems mounted on EVs and HEVs[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5.
[60] Hwang C C, Chang C M, Liu C T.A fuzzy-based taguchi method for multiobjective design of PM motors[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2153-2156.
[61] Lee Sujin, Kim K, Cho S, et al.Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design[J]. IET Electric Power Applications, 2014, 8(1): 23-28.
[62] Si Jikai, Zhao Suzhen, Feng Haichao, et al.Multi-objective optimization of surface-mounted and interior permanent magnet synchronous motor based on Taguchi method and response surface method[J]. Chinese Journal of Electrical Engineering, 2018, 4(1): 67-73.
[63] Support.Minitab.com. 什么是响应曲面设计、中心复合设计和Box-Behnken设计[EB/OL]. (2022-6-28). https://support.minitab.com/zh-cn/minitab/21/help-and-how-to/modeling-statistics/doe/supporting-topics/ response-surface-designs/response-surface-central-composite-and-box-behnken-designs/.
[64] 徐琎. 复杂结构拉丁超立方体设计理论与应用[D]. 长沙: 国防科技大学, 2019.
[65] Zhu Xiaoyong, Wu Weiqiang, Quan Li, et al.Design and multi-objective stratified optimization of a less-rare-earth hybrid permanent magnets motor with high torque density and low cost[J]. IEEE Transa-ctions on Energy Conversion, 2019, 34(3): 1178-1189.
[66] Rafiee V, Faiz J.Uncertainty quantification of permanent magnet motor using response surface surrogate modeling[C]//IEEE 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tehran, Iran, 2020: 1-5.
[67] Lee J K, Jung D H, Lim J, et al.A study on the synchronous reluctance motor design for high torque by using RSM[J]. IEEE Transactions on Magnetics, 2018, 54(3): 1-5.
[68] Jeong I, Nam K.Analytic expressions of torque and inductances via polynomial approximations of flux linkages[J]. IEEE Transactions on Magnetics, 2015, 51(7): 1-9.
[69] Tinazzi F, Zigliotto M.Torque estimation in high-efficency IPM synchronous motor drives[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 983-990.
[70] Kuehl S, Landsmann P, Kennel R M.Bivariate polynomial approximation of cross-saturated flux curves in synchronous machine models[C]//IEEE International Energy Conference and Exhibition, Florence, Italy, 2012: 219-224.
[71] Huang Shoudao, Chen Ziqiang, Huang Keyuan, et al.Maximum torque per ampere and flux-weakening control for PMSM based on curve fitting[C]//IEEE Vehicle Power and Propulsion Conference, Lille, 2010: 1-5.
[72] Baek S W, Kim B T, Kwon B I.Practical optimum design based on magnetic balance and copper loss minimization for a single-phase line start PM motor[J]. IEEE Transactions on Magnetics, 2011, 47(10): 3008-3011.
[73] Bhosekar A, Ierapetritou M.Advances in surrogate based modeling, feasibility analysis, and optimization: a review[J]. Computers & Chemical Engineering, 2018, 108: 250-267.
[74] Zhou Suying.Modeling of switched reluctance motor based on combined clustering RBF network[C]//IEEE 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 2017: 1-5.
[75] Ge Yang, Yang Lihui, Ma Xikui.A novel terminal sliding mode control based on RBF neural network for the permanent magnet synchronous motor[C]// IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 2018: 1227-1232.
[76] Zhang Xulong, Wang Feng, Shao Xiaogen.Flux linkage characteristics on-line modeling of switched reluctance motor based on boundary constraints RBF[C]//IEEE Proceeding of the 11th World Con-gress on Intelligent Control and Automation, Shenyang, 2015: 5942-5946.
[77] ArcGIS. 克里金法的工作原理[EB/OL]. (2016-4-22). https://desktop.arcgis.com/zh-cn/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm.
[78] Joseph V R, Hung Y, Sudjianto A.Blind Kriging: a new method for developing metamodels[J]. Journal of Mechanical Design, 2008, 130(3): 350-353.
[79] Lim D K, Yi K P, Jung S Y, et al.Optimal design of an interior permanent magnet synchronous motor by using a new surrogate-assisted multi-objective opti-mization[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4.
[80] Jang J, Lee Jin min, Cho S G, et al. Space-time Kriging surrogate model to consider uncertainty of time interval of torque curve for electric power steering motor[J]. IEEE Transactions on Magnetics, 2018, 54(3): 1-4.
[81] Bu Jianguo, Zhou Ming, Lan Xudong, et al.Opti-mization for airgap flux density waveform of flywheel motor using NSGA-2 and Kriging model based on MaxPro design[J]. IEEE Transactions on Magnetics, 2017, 53(8): 1-7.
[82] 李雄松, 崔鹤松, 胡纯福, 等. 平板型永磁直线同步电机推力特性的优化设计[J]. 电工技术学报, 2021, 36(5): 916-923.
Li Xiongsong, Cui Hesong, Hu Chunfu, et al.Optimal design of thrust characteristics of flat-type permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 916-923.
[83] Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1/2/3): 50-79.
[84] Song Xuewei, Zhao Jiwen, Song Juncai, et al.Local demagnetization fault recognition of permanent mag-net synchronous linear motor based on S-transform and PSO-LSSVM[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7816-7825.
[85] Liang Xiaodong, Ali M Z, Zhang Huaguang.Indu-ction motors fault diagnosis using finite element method: a review[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1205-1217.
[86] Song Juncai, Dong Fei, Zhao Jiwen, et al.An efficient multiobjective design optimization method for a PMSLM based on an extreme learning machine[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1001-1011.
[87] 张圳, 王丽梅. 永磁同步直线电机自组织概率型模糊神经网络控制[J]. 电气技术, 2020, 21(12): 1-5, 16.
Zhang Zhen, Wang Limei.Permanent magnet linear synchronous motor self-organizing probabilistic fuzzy neural network control[J]. Electrical Engineering, 2020, 21(12): 1-5, 16.
[88] Sadrossadat S A, Rahmani O.ANN-based method for parametric modelling and optimising efficiency, output power and material cost of BLDC motor[J]. IET Electric Power Applications, 2020, 14(6): 951-960.
[89] Doi S, Sasaki H, Igarashi H.Multi-objective topology optimization of rotating machines using deep learning[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-5.
[90] Barmada S, Fontana N, Sani Luca, et al.Deep learning and reduced models for fast optimization in electromagnetics[J]. IEEE Transactions on Magnetics, 2020, 56(3): 1-4.
[91] Asanuma J, Doi S, Igarashi H. Transfer learning through deep learning: application to topology optimization of electric motor[J]. IEEE Transactions on Magnetics, 2020, 56(3): 1-4.
[92] 王秉中. 计算电磁学[M]. 北京: 科学出版社, 2005.
[93] Wang Weitao, Zhao Jiwen, Song Juncai, et al.Thrust performance improvement for PMSLM through double-layer reverse skewed coil and WRF-MKH method[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2950-2960.
[94] Müller J, Piché R.Mixture surrogate models based on Dempster-Shafer theory for global optimization problems[J]. Journal of Global Optimization, 2011, 51(1): 79-104.
[95] Goel T, Haftka R T, Shyy W, et al.Ensemble of surrogates[J]. Structural and Multidisciplinary Opti-mization, 2007, 33(3): 199-216.
[96] 杜斌. 基于组合代理模型的轮毂电机优化设计[D]. 长沙: 湖南大学, 2017.
[97] Song Xueguan, Lü Liye, Li Jieling, et al.An advanced and robust ensemble surrogate model: extended adaptive hybrid functions[J]. Journal of Mechanical Design, 2018, 140(4): 041402.
[98] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
Han Zhonghua.Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.
[99] 周奇, 杨扬, 宋学官, 等. 变可信度近似模型及其在复杂装备优化设计中的应用研究进展[J]. 机械工程学报, 2020, 56(24): 219-245.
Zhou Qi, Yang Yang, Song Xueguan, et al.Survey of multi-fidelity surrogate models and their applications in the design and optimization of engineering equipment[J]. Journal of Mechanical Engineering, 2020, 56(24): 219-245.
[100] Peherstorfer B, Willcox K, Gunzburger M.Survey of multifidelity methods in uncertainty propagation, inference, and optimization[J]. SIAM Review, 2018, 60(3): 550-591.
[101] 钟锡健, 张更新, 谢智东. 基于移动最小二乘法的天线增益模型构建[J]. 通信技术, 2016, 49(5): 549-553.
Zhong Xijian, Zhang Gengxin, Xie Zhidong.Con-struction of antenna gain model based on movable least square[J]. Communications Technology, 2016, 49(5): 549-553.
[102] 张艺潇, 赵忠国, 郑江华. 利用MARS估算伊犁地区参考作物蒸散量[J]. 武汉大学学报(信息科学版), 2020: 1-13.
Zhang Yixiao, Zhao Zhongguo, Zheng Jianghua.Using multivariate adaptive regression splines for estimation of reference crop evapotranspiration in Yili region[J]. Geomatics and Information Science of Wuhan University, 2020: 1-13.
[103] 曹仙斌. 符号数据回归方法研究[D]. 合肥: 中国科学技术大学, 2018.
[104] Fatemi A, Ionel D M, Demerdash N A O, et al. Optimal design of IPM motors with different cooling systems and winding configurations[J]. IEEE Transa-ctions on Industry Applications, 2016, 52(4): 3041-3049.
[105] Pourmoosa A A, Mirsalim M.Design optimization, prototyping, and performance evaluation of a low-speed linear induction motor with toroidal winding[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1546-1555.
[106] 李成功, 杨建玺, 王团锋, 等. 基于程序集成及响应面模型的电机冷却性能优化[J]. 电机与控制应用, 2019, 46(10): 19-24.
Li Chenggong, Yang Jianxi, Wang Tuanfeng, et al.Optimization of motor cooling performance based on program integration and response surface model[J]. Electric Machines & Control Application, 2019, 46(10): 19-24.
[107] Gu Aiyu, Ruan Bo, Cao Wenyao, et al.A general SVM-based multi-objective optimization methodology for axial flux motor design: YASA motor of an electric vehicle as a case study[J]. IEEE Access, 7: 180251-180257.
[108] Son B, Kim J S, Kim J W, et al.Adaptive particle swarm optimization based on kernel support vector machine for optimal design of synchronous reluctance motor[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-5.
[109] 鞠鲁峰. 基于支持向量机建模的永磁球形电机的优化设计研究[D]. 合肥: 合肥工业大学, 2015.
[110] Zhao Jiwen, Huang Jian, Wang Yahua, et al.Design optimization of permanent magnet synchronous linear motor by multi-SVM[C]//IEEE 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 2014: 1279-1282.
[111] Ibrahim I, Silva R, Mohammadi M H, et al.Surrogate-based acoustic noise prediction of electric motors[J]. IEEE Transactions on Magnetics, 2020, 56(2): 1-4.
[112] Zhao Jingying, Guo Hai, Wang Likun, et al.Computer modeling of the eddy current losses of metal fasteners in rotor slots of a large nuclear steam turbine generator based on finite-element method and deep Gaussian process regression[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5349-5359.
[113] Jin Liang, Wang Fei, Yang Qingxin.Performance analysis and optimization of permanent magnet synchronous motor based on deep learning[C]//IEEE 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 2017: 1-5.
[114] Gong Jinlin, Zhang Hongru, Zhao Benteng, et al.Proposal of a Bi-objective Kriging adapted output space mapping technique for electromagnetic design optimization[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-5.
[115] Chai Wenping, Kwon B I.A magnetic pole modu-lation method on surface permanent magnet machines for high performances with different magnetization[J]. IEEE Access, 7: 79839-79849.
[116] Zhao Wenliang, Kwon J W, Wang Xiuhe, et al.Optimal design of a spoke-type permanent magnet motor with phase-group concentrated-coil windings to minimize torque pulsations[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4.
[117] 张邦富, 程明, 王飒飒, 等. 基于改进型代理模型优化算法的磁通切换永磁直线电机优化设计[J]. 电工技术学报, 2020, 35(5): 1013-1021.
Zhang Bangfu, Cheng Ming, Wang Sasa, et al.Optimal design of flux-switching permanent magnet linear machine based on improved surrogate-based optimization algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1013-1021.
[118] 过希文, 宫能伟, 王群京, 等. 基于随机森林的永磁球形电机优化通电策略[J]. 控制工程, 2021, 28(6): 1100-1107.
Guo Xiwen, Gong Nengwei, Wang Qunjing, et al.Optimization electrifying strategy of permanent magnet spherical motor based on random forests[J]. Control Engineering of China, 2021, 28(6): 1100-1107.
[119] Ahmed S, Koseki T, Norizuki K, et al.Rapid Co-Kriging based multi-fidelity surrogate assisted performance optimization of a transverse flux PMLSM[C]//IEEE 12th International Symposium on Linear Drives for Industry Applications (LDIA), Neuchatel, Switzerland, 2019: 1-6.
[120] Bramerdorfer G, Winkler S M, Kommenda M, et al.Using FE calculations and data-based system identification techniques to model the nonlinear behavior of PMSMs[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6454-6462.
[121] (英)亚历山大·I. J. 福瑞斯特, 安德瑞斯·索比斯特, 安迪·J. 肯尼. 基于代理模型的工程设计实用指南[M]. 韩忠华, 张科施, 译. 北京: 航空工业出版社, 2018.
[122] Crombecq K, Laermans E, Dhaene T.Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling[J]. European Journal of Operational Research, 2011, 214(3): 683-696.
[123] 孙嘉男. 永磁同步伺服电机序贯多目标完全析因优化方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[124] Jin R C, Chen W, Sudjianto A.On sequential sampling for global metamodeling in engineering design[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec, Canada, 2008: 539-548.
[125] Farhang-Mehr A, Azarm S.Bayesian meta-modelling of engineering design simulations: a sequential approach with adaptation to irregularities in the response behaviour[J]. International Journal for Numerical Methods in Engineering, 2005, 62(15): 2104-2126.
[126] Crombecq K, de Tommasi L, Gorissen D, et al. A novel sequential design strategy for global surrogate modeling[C]//IEEE Proceedings of the Winter Simu-lation Conference (WSC), Austin, TX, USA, 2009: 731-742.
[127] Ajdari A, Mahlooji H.An adaptive exploration-exploitation algorithm for constructing metamodels in random simulation using a novel sequential experimental design[J]. Communications in Statistics-Simulation and Computation, 2014, 43(5): 947-968.
[128] Cozad A, Sahinidis N V, Miller D C.Learning surrogate models for simulation-based optimization[J]. AIChE Journal, 2014, 60(6): 2211-2227.
[129] 张建侠, 马义中, 欧阳林寒, 等. 基于Kriging模型的多点加点准则和并行代理优化算法[J]. 系统工程理论与实践, 2020, 40(1): 251-261.
Zhang Jianxia, Ma Yizhong, Ouyang Linhan, et al.A multi-points infill sampling criterion and parallel surrogate-based optimization algorithm based on Kriging model[J]. Systems Engineering-Theory & Practice, 2020, 40(1): 251-261.
[130] Garud S S, Karimi I A, Kraft M.Design of computer experiments: a review[J]. Computers & Chemical Engineering, 2017, 106: 71-95.
[131] Song Tengfei, Liu Huijuan, Zhang Qian, et al.Multi-physics and multi-objective optimisation design of interior permanent magnet synchronous motor for electric vehicles[J]. IET Electric Power Applications, 2020, 14(11): 2243-2254.
[132] de Paula Machado Bazzo T, Kölzer J F, Carlson R, et al. Multiphysics design optimization of a permanent magnet synchronous generator[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9815-9823.
[133] Kreuawan S, Gillon F, Brochet P.Optimal design of permanent magnet motor using multidisciplinary design optimization[C]//IEEE 18th International Con-ference on Electrical Machines, Vilamoura, Portugal, 2008: 1-6.
[134] Di Nardo M, Galea M, Gerada C, et al.Multi-physics optimization strategies for high speed synchronous reluctance machines[C]//IEEE Energy Conversion Congress and Exposition, Montreal, QC, Canada, 2015: 2813-2820.
[135] Nardo M D, Calzo G L, Galea M, et al.Design optimization of a high-speed synchronous reluctance machine[J]. IEEE Transactions on Industry Appli-cations, 2018, 54(1): 233-243.
[136] 杨磊, 韦喜忠, 赵峰, 等. 多学科设计优化算法研究综述[J]. 舰船科学技术, 2017, 39(3): 1-5, 47.
Yang Lei, Wei Xizhong, Zhao Feng, et al.Review of the multidisciplinary design optimization algorithm[J]. Ship Science and Technology, 2017, 39(3): 1-5, 47.
[137] 杨丽丽. 多学科协同优化及其不确定性和多目标性研究[D]. 上海: 上海交通大学, 2018.
[138] Sobieszczanski-Sobieski J, Kodiyalam S.BLISS/S: a new method for two-level structural optimization[J]. Structural and Multidisciplinary Optimization, 2001, 21(1): 1-13.
[139] 张立章, 尹泽勇, 米栋, 等. 基于改进的BLISS2000优化策略的涡轮级多学科设计优化[J]. 机械强度, 2015, 37(4): 639-645.
Zhang Lizhang, Yin Zeyong, Mi Dong, et al.Multidisciplinary design optimization of turbine stage based on improved bi-level integrated system syn-thesis[J]. Journal of Mechanical Strength, 2015, 37(4): 639-645.
[140] Kim H, Ragon S, Soremekun G, et al.Flexible approximation model approach for Bi-level integrated system synthesis[C]//10th AIAA/ISSMO Multidis-ciplinary Analysis and Optimization Conference, Albany, New York, 2004: 4545.
[141] Kim H M, Michelena N F, Papalambros P Y, et al.Target cascading in optimal system design[J]. Journal of Mechanical Design, 2003, 125(3): 474-480.
[142] 谢敏, 吉祥, 柯少佳, 等. 基于目标级联分析法的多微网主动配电系统自治优化经济调度[J]. 中国电机工程学报, 2017, 37(17): 4911-4921, 5210.
Xie Min, Ji Xiang, Ke Shaojia, et al.Autonomous optimized economic dispatch of active distribution power system with multi-microgrids based on analytical target cascading theory[J]. Proceedings of the CSEE, 2017, 37(17): 4911-4921, 5210.
[143] 夏云睿, 朱建全. 基于目标级联分析法的多区域电力系统分散优化调度[J]. 电工电气, 2020(11): 10-15.
Xia Yunrui, Zhu Jianquan.Decentralized optimal dispatch of multi-area power systems based on analytical target cascading[J]. Electrotechnics Electric, 2020(11): 10-15.
[144] 张强, 赵晋泉, 戴则梅, 等. 基于目标级联分析的输配电网黑启动分布式协同优化方法[J]. 电力系统自动化, 2021, 45(3): 111-120.
Zhang Qiang, Zhao Jinquan, Dai Zemei, et al.Distributed coordinated optimization method for black-start of transmission and distribution networks based on analytical target cascading[J]. Automation of Electric Power Systems, 2021, 45(3): 111-120.
[145] 赵勇, 杨维维, 黄奕勇, 等. 一种改进的混合BLISS多学科设计优化方法[J]. 国防科技大学学报, 2011, 33(5): 17-21.
Zhao Yong, Yang Weiwei, Huang Yiyong, et al.An improved MDO procedure: hybrid Bi-level integrated system synthesis[J]. Journal of National University of Defense Technology, 2011, 33(5): 17-21.
[146] Yao Wen, Chen Xiaoqian, Ouyang Qi, et al.A surrogate based multistage-multilevel optimization procedure for multidisciplinary design optimization[J]. Structural and Multidisciplinary Optimization, 2012, 45(4): 559-574.
[147] Bracikowski N, Hecquet M, Brochet P, et al.Multi-physics modeling of a permanent magnet synchronous machine by using lumped models[J]. IEEE Transa-ctions on Industrial Electronics, 2012, 59(6): 2426-2437.
[148] Feng Jianghua, Wang Yu, Guo Shuying, et al.Split ratio optimisation of high-speed permanent magnet brushless machines considering mechanical con-straints[J]. IET Electric Power Applications, 2019, 13(1): 81-90.
[149] Li Zheng, Chen Qing, Wang Qunjing.Analysis of multi-physics coupling field of multi-degree-of-freedom permanent magnet spherical motor[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-5.
[150] Zhu Gaojia, Liu Xiaoming, Li Longnü, et al.Coupled electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machines with a modified model[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2): 204-209.
[151] Li Yingjie, Bobba D, Sarlioglu B.Design and optimization of a novel dual-rotor hybrid PM machine for traction application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1762-1771.
[152] Guo Hong, Lü Zhenhua, Wu Zhiyong, et al.Multi-physics design of a novel turbine permanent magnet generator used for downhole high-pressure high-temperature environment[J]. IET Electric Power Applications, 2013, 7(3): 214-222.
[153] Akiki P, Hassan M H, Bensetti M, et al.Multiphysics design of a V-shape IPM motor[J]. IEEE Transactions on Energy Conversion, 2018, 33(3): 1141-1153.
[154] 郭恩睿, 张凤阁, 戴睿, 等. 高速永磁电机的设计与磁热耦合温升计算[J]. 大电机技术, 2020(3): 1-6, 25.
Guo Enrui, Zhang Fengge, Dai Rui, et al.Design and magnetic-thermal coupling temperature rise analysis of high-speed permanent magnet motor[J]. Large Electric Machine and Hydraulic Turbine, 2020(3): 1-6, 25.
[155] Wang Tianyu, Zhang Yue, Wen Fuqiang, et al.Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine[J]. IET Electric Power Applications, 2019, 13(6): 820-825.
[156] Wrobel R, Mellor P H, Popescu M, et al.Power loss analysis in thermal design of permanent-magnet machines—a review[J]. IEEE Transactions on Industry Applications, 2016, 52(2): 1359-1368.
[157] 丁树业, 朱敏, 江欣. 永磁同步电机三维全域温度场与温度应力耦合研究[J]. 电机与控制学报, 2018, 22(1): 53-60, 71.
Ding Shuye, Zhu Min, Jiang Xin.Coupling study of 3D universal temperature field and temperature stress for permanent magnet synchronous motor[J]. Electric Machines and Control, 2018, 22(1): 53-60, 71.
[158] 万援, 崔淑梅, 吴绍朋, 等. 扁平大功率高速永磁同步电机的护套设计及其强度优化[J]. 电工技术学报, 2018, 33(1): 55-63.
Wan Yuan, Cui Shumei, Wu Shaopeng, et al.Design and strength optimization of the carbon fiber sleeve of high-power high-speed PMSM with flat structure[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 55-63.
[159] 张超, 朱建国, 韩雪岩. 高速表贴式永磁电机转子强度分析[J]. 中国电机工程学报, 2016, 36(17): 4719-4727.
Zhang Chao, Zhu Jianguo, Han Xueyan.Rotor strength analysis of high-speed surface mounted permanent magnet rotors[J]. Proceedings of the CSEE, 2016, 36(17): 4719-4727.
[160] 王天煜, 温福强, 张凤阁, 等. 兆瓦级高速永磁电机转子多场耦合强度分析[J]. 电工技术学报, 2018, 33(19): 4508-4516.
Wang Tianyu, Wen Fuqiang, Zhang Fengge, et al.Analysis of multi-field coupling strength for MW high-speed permanent magnet machine[J]. Transa-ctions of China Electrotechnical Society, 2018, 33(19): 4508-4516.
[161] 彭河蒙. 电动汽车电机驱动系统电磁干扰预测模型的研究[D]. 重庆: 重庆大学, 2015.
[162] Wu Shuai, Zhao Xiangyu, Jiao Zongxia, et al.Multi-objective optimal design of a toroidally wound radial-flux Halbach permanent magnet array limited angle torque motor[J]. IEEE Transactions on Indu-strial Electronics, 2017, 64(4): 2962-2971.
[163] Zuo Shuguang, Lin Fu, Wu Xudong.Noise analysis, calculation, and reduction of external rotor permanent-magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6204-6212.
[164] 乔长帅, 唐赢武, 钟博. 牵引电机定子端部绕组电磁力计算分析[J]. 电机技术, 2020(5): 15-18, 22.
Qiao Changshuai, Tang Yingwu, Zhong Bo.Calcu-lation and analysis on electromagnetic force of the stator end winding in traction motors[J]. Electrical Machinery Technology, 2020(5): 15-18, 22.
[165] 陈金秀, 阮琳, 顾国彪. 发电-电动机定子线棒启停过程中的热应力分析[J]. 中国电机工程学报, 2017, 37(3): 898-906.
Chen Jinxiu, Ruan Lin, Gu Guobiao.Thermal stress analysis of stator bar in generator-motor during startup/shutdown process[J]. Proceedings of the CSEE, 2017, 37(3): 898-906.
[166] 谢颖, 王泽, 单雪婷, 等. 基于多场量的笼型感应电机三维瞬态磁热固耦合计算分析[J]. 中国电机工程学报, 2016, 36(11): 3076-3084.
Xie Ying, Wang Ze, Shan Xueting, et al.The calculations and analysis of 3D transient magnetic-thermal-solid coupling for squirrel-cage induction motors based on multi fields[J]. Proceedings of the CSEE, 2016, 36(11): 3076-3084.
[167] 李晓华, 黄苏融, 李良梓. 电动汽车用永磁同步电机振动噪声的计算与分析[J]. 电机与控制学报, 2013, 17(8): 37-42.
Li Xiaohua, Huang Surong, Li Liangzi.Calculation and analysis of vehicle vibration and noise of permanent magnet synchronous motor applied in electric vehicle[J]. Electric Machines and Control, 2013, 17(8): 37-42.
[168] 贲彤, 陈芳媛, 陈龙, 等. 考虑力-磁耦合效应的无取向电工钢片磁致伸缩模型的改进[J]. 中国电机工程学报, 2021, 41(15): 5361-5370.
Ben Tong, Chen Fangyuan, Chen Long, et al.An improved magnetostrictive model of non-oriented electrical steel sheet considering force-magnetic coupling effect[J]. Proceedings of the CSEE, 2021, 41(15): 5361-5370.
[169] Le Besnerais J, Fasquelle A, Hecquet M, et al.Multiphysics modeling: electro-vibro-acoustics and heat transfer of PWM-fed induction machines[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1279-1287.
[170] 李晓华, 赵容健, 田晓彤, 等. 逆变器供电对电动汽车内置式永磁同步电机振动噪声特性影响研究[J]. 电工技术学报, 2020, 35(21): 4455-4464.
Li Xiaohua, Zhao Rongjian, Tian Xiaotong, et al.Study on vibration and noise characteristics of interior permanent magnet synchronous machine for electric vehicles by inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4455-4464.
[171] 孟大伟, 施道龙, 于喜伟, 等. 单边磁拉力对大型感应电机转子临界转速的影响分析[J]. 大电机技术, 2015(6): 15-19.
Meng Dawei, Shi Daolong, Yu Xiwei, et al.Analysis of effect of unbalanced magnetic pull on rotor critical speed of large asynchronous motor[J]. Large Electric Machine and Hydraulic Turbine, 2015(6): 15-19.
[172] 张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7): 1-18.
Zhang Fengge, Du Guanghui, Wang Tianyu, et al.Review on development and design of high speed machines[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 1-18.
[173] 翟丽. 新能源汽车电驱动系统EMC问题的改进及展望[J]. 安全与电磁兼容, 2017(5): 9-10.
Zhai Li.Improvement and outlook on EMC problems of electric drive system in new energy vehicle[J]. Safety & EMC, 2017(5): 9-10.
[174] Benecke J.Impedance and emission optimization of low-voltage DC motors for EMC compliance[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 3833-3839.
[175] 李增亮, 张琦, 于然, 等. 计及温度边界条件变化的潜水电机磁热流耦合模型分析[J]. 微电机, 2018, 51(11): 18-26.
Li Zengliang, Zhang Qi, Yu Ran, et al.Analysis of magnetic-thermal-flux coupling model of submersible motor considering variation of temperature boundary[J]. Micromotors, 2018, 51(11): 18-26.
[176] 韩雪岩, 张华伟, 徐昕, 等. 基于计算流体力学的非晶合金轴向磁通永磁电机冷却系统设计[J]. 电工技术学报, 2017, 32(20): 189-197.
Han Xueyan, Zhang Huawei, Xu Xin, et al.Design of cooling system for amorphous alloy axial flux per-manent magnet motor based on computational fluid dynamics[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 189-197.
[177] 王晓远, 杜静娟. CFD分析车用电机螺旋水路的散热特性[J]. 电工技术学报, 2018, 33(4): 955-963.
Wang Xiaoyuan, Du Jingjuan.CFD analysis of heat transfer characterization in spiral channel cooling for permanent magnet electric machine in EVs[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 955-963.
[178] 刘雄, 熊飞, 朱林培, 等. 电动汽车驱动电机三维CFD热分析与温升测试研究[J]. 电机与控制应用, 2019, 46(3): 83-89, 108.
Liu Xiong, Xiong Fei, Zhu Linpei, et al.Three-dimensional CFD thermal analysis and temperature rise test of drive motor for electric vehicle[J]. Electric Machines & Control Application, 2019, 46(3): 83-89, 108.
[179] Cramer E J, Dennis J E Jr, Frank P D, et al. Problem formulation for multidisciplinary optimization[J]. SIAM Journal on Optimization, 1994, 4(4): 754-776.
[180] de Weck O, Agte J, Sobieszczanski-Sobieski J, et al. State-of-the-art and future trends in multidisciplinary design optimization[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, Reston, Virginia, 2007: 1905.
[181] Fodorean D, Idoumghar L, N'Diaye A, et al. Simu-lated annealing algorithm for the optimisation of an electrical machine[J]. IET Electric Power Applica-tions, 2012, 6(9): 735.
[182] Yang Lin, Ho S L, Fu W N, et al.Design optimization of a permanent magnet motor derived from a general magnetization pattern[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4.
[183] Li Yuanwen, Zhu Changsheng, Wu Lijian, et al.Multi-objective optimal design of high-speed surface-mounted permanent magnet synchronous motor for magnetically levitated flywheel energy storage system[J]. IEEE Transactions on Magnetics, 2019, 55(7): 1-8.
[184] Cupertino F, Pellegrino G, Gerada C.Design of synchronous reluctance motors with multiobjective optimization algorithms[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 3617-3627.
[185] 李立毅, 唐勇斌, 刘家曦, 等. 多种群遗传算法在无铁心永磁直线同步电机优化设计中的应用[J]. 中国电机工程学报, 2013, 33(15): 69-77, 14.
Li Liyi, Tang Yongbin, Liu Jiaxi, et al.Application of the multiple population genetic algorithm in optimum design of air-core permanent magnet linear syn-chronous motors[J]. Proceedings of the CSEE, 2013, 33(15): 69-77, 14.
[186] Watanabe K, Suga Takao, Kitabatake S.Topology optimization based on the ON/OFF method for syn-chronous motor[J]. IEEE Transactions on Magnetics, 2018, 54(3): 1-4.
[187] 王晓远, 高鹏. 基于进化策略的轮毂电机永磁体结构优化设计[J]. 中国电机工程学报, 2015, 35(4): 979-984.
Wang Xiaoyuan, Gao Peng.Optimal design of permanent magnets of in-wheel motor based on evolution strategy[J]. Proceedings of the CSEE, 2015, 35(4): 979-984.
[188] Bora T C, Coelho L D S, Lebensztajn L. Bat-inspired optimization approach for the brushless DC wheel motor problem[J]. IEEE Transactions on Magnetics, 2012, 48(2): 947-950.
[189] Zhang Zhu, Rao Shenghua, Zhang Xiaoping.Per-formance prediction of switched reluctance motor using improved generalized regression neural networks for design optimization[J]. CES Transa-ctions on Electrical Machines and Systems, 2018, 2(4): 371-376.
[190] Harris M R, Pajooman G H, Abu Sharkh S M. Performance and design optimisation of electric motors with heteropolar surface magnets and homopolar windings[J]. IEE Proceedings-Electric Power Applications, 1996, 143(6): 429.
[191] Kumar B M, Ashok R B.Soft computing using GWO (grey wolf optimization) for the performance improvement of high speed brushless DC motor[C]//IEEE International Conference on Emerging Trends and Innovations In Engineering and Technological Research (ICETIETR), Ernakulam, India, 2018: 1-6.
[192] Krasopoulos C T, Armouti I P, Kladas A G.Hybrid multiobjective optimization algorithm for PM motor design[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4.
[193] 郑金华, 邹娟. 多目标进化优化[M]. 北京: 科学出版社, 2017. |