Research on Tooth Standing Wave Characteristic of Wound Rotor Brushless Doubly-Fed Machine
Ou Lezhi1, Wang Xuefan1,2, Li Zhenming1, Gao Xinmai1, Xiong Fei1
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China; 2. EAST Group Co. Ltd Dongguan 523808 China
Abstract:Since there are two sets of winding in the stator of brushless doubly-fed machine (BDFM) and the rotor needs to couple with both two sets of stator winding, the air-gap resultant magnetic field of BDFM is composed of two fundamental harmonic field with different pole pair numbers, which leads to a more complicated magnetic characteristic compared with normal AC machines. Taking wound rotor BDFM as the researching subject, the air-gap magnetic field is analyzed from rotor reference frame by theoretical derivation and finite element (FE) simulation in the paper. A characteristic similar to standing wave, which is called tooth standing wave, is proposed for the air-gap magnetic field. It indicates that the axis of resultant magnetic field is relatively static to rotor in wound rotor BDFM, which is similar with the operating feature of synchronous machine. Meanwhile, the tooth standing wave has great significance in selection of pole pair numbers and optimization of machine performance. At last, a prototype machine has been experimented by embedding detective coils in rotor winding to measure the air-gap flux density, which shows the validity of the theoretical analysis.
欧乐知, 王雪帆, 李振明, 高信迈, 熊飞. 绕线转子无刷双馈电机齿驻波特性研究[J]. 电工技术学报, 2019, 34(17): 3599-3606.
Ou Lezhi, Wang Xuefan, Li Zhenming, Gao Xinmai, Xiong Fei. Research on Tooth Standing Wave Characteristic of Wound Rotor Brushless Doubly-Fed Machine. Transactions of China Electrotechnical Society, 2019, 34(17): 3599-3606.
[1] McMahon R A, Roberts P C, Wang X, et al. Performance of BDFM as generator and motor[J]. IEE Proceedings-Electric Power Applications, 2006, 153(2): 289-299. [2] 程明, 韩鹏, 魏新迟. 无刷双馈风力发电机的设计、分析与控制[J]. 电工技术学报, 2016, 31(19): 37-53. Cheng Ming, Han Peng, Wei Xinchi.Design, analysis and control of brushless doubly-fed generators for wind power application[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 37-53. [3] 贾磊, 王雪帆, 熊飞. 700kW船用轴带无刷双馈发电机的设计与测试[J]. 电工技术学报, 2016, 31(15): 32-42. Jia Lei, Wang Xuefan, Xiong Fei.Design and test of a 700kW ship shaft brushless doubly fed generator[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 32-42. [4] 李旭, 焦晓佑. 风力发电中无刷双馈电机的设计与工作原理[J]. 电气技术, 2007, 8(4): 40-42. Li Xu, Jiao Xiaoyou.The principle and design of the brushless doubly-fed machines in the wind power generation[J]. Electrical Engineering, 2007, 8(4): 40-42. [5] 刘其辉, 韩贤岁. 双馈风电机组的通用型机电暂态模型及其电磁暂态模型的对比分析[J]. 电力系统保护与控制, 2014, 42(23): 89-94. Liu Qihui, Han Xiansui.Comparative study on electromechanical and electromagnetic transient model for grid-connected DFIG[J]. Power System Protection and Control, 2014, 42(23): 89-94. [6] Shao S Y, Abdi E, McMahon R. Low-cost variable speed drive based on a brushless doubly-fed motor and a fractional unidirectional converter[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 317-325. [7] 陈昕, 王雪帆. 基于无刷双馈发电机的船舶独立发电系统励磁控制和性能分析[J]. 电工技术学报, 2017, 32(3): 120-129. Chen Xin, Wang Xuefan.Excitation control and performance analysis for BDFIG-based ship stand-alone generation system[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 120-129. [8] 邓先明, 姜建国, 方荣惠. 笼型转子无刷双馈电机的电磁分析和等效电路[J]. 电工技术学报, 2005, 20(9): 19-28. Deng Xianming, Jiang Jianguo, Fang Ronghui.Electromagnetic analysis and equivalent circuit of brushless doubly-fed machine with cage rotor[J]. Transactions of China Electrotechnical Society, 2005, 20(9): 19-28. [9] 杜江, 韩力, 欧先朋, 等. 笼型转子无刷双馈电机异步运行模式的实验研究[J]. 中国电机工程学报, 2016, 36(14): 3964-3973. Du Jiang, Han Li, Ou Xianpeng, et al.Experimental study of brushless doubly-fed machine with cage rotor at the asynchronous operation mode[J]. Proceedings of the CSEE, 2016, 36(14): 3964-3973. [10] 欧先朋, 韩力, 韩雪峰, 等. 两种不同笼型转子结构无刷双馈电机的稳态运行性能对比[J]. 电工技术学报, 2017, 32(23): 61-71. Ou Xianpeng, Han Li, Han Xuefeng, et al.Comparison of steady operating performances on brushless doubly-fed machine with two different cage rotors[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 61-71. [11] 刘慧娟, Longya Xu.一种径向叠片磁障式转子双馈无刷电机的设计与性能分析[J]. 电工技术学报, 2012, 27(7): 55-62. Liu Huijuan, Xu Longya.Design and performance analysis of a doubly excited brushless machine with radially laminated magnetic barrier rotor[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 55-62. [12] 黄长喜, 阚超豪, 任泰安, 等. 磁阻式无刷双馈电机的转子结构及其性能分析[J]. 电工技术学报, 2017, 32(增刊2): 26-33. Huang Changxi, Kan Chaohao, Ren Taian, et al.Performance analysis on brushless doubly-fed motor with reluctance rotor[J]. Transactions of China Electrotechnical Society, 2017, 32(S2): 26-33. [13] Dorrell D G, Knight A M, Betz R E.Improvements in brushless doubly fed reluctance generators using high-flux-density steels and selection of the correct pole numbers[J]. IEEE Transactions on Magnetics, 2011, 47(10): 4092-4095. [14] Xiong Fei, Wang Xuefan.Design of a low-harmonic-content wound rotor for the brushless doubly fed generator[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 158-168. [15] 刘光军, 王雪帆, 熊飞. 绕线转子无刷双馈电机‘∏’型等效电路[J]. 中国电机工程学报, 2016, 36(20): 5632-5638. Liu Guangjun, Wang Xuefan, Xiong Fei.A ‘∏’-type equivalent circuit of wound rotor brushless doubly-fed machines[J]. Proceedings of the CSEE, 2016, 36(20): 5632-5638. [16] 张凤阁, 王秀平, 贾广隆, 等. 无刷双馈电机复合转子结构参数的优化设计[J]. 电工技术学报, 2014, 29(1): 77-84. Zhang Fengge, Wang Xiuping, Jia Guanglong, et al.Optimum design for composite rotor structural parameters of brushless doubly fed machines[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 77-84. [17] Yu Siyang, Zhang Fengge, Wang Hao.Parameter calculation and analysis of a novel wind power generator[J]. IEEE Transactions on Magnetics, 2017, 53(11): 8205607. [18] 阚超豪, 王雪帆. 齿谐波法设计的无刷双馈发电机运行范围[J]. 中国电机工程学报, 2011, 31(24): 124-130. Kan Chaohao, Wang Xuefan.Operation range of brushless doubly-fed machine based on slot-harmonics[J]. Proceedings of the CSEE, 2011, 31(24): 124-130.