A Fixed-Point Frequency Domain Method Based on Magnetic Scalar Potential and Its Application to the DC Biased Problem in the Laminated Core
Zhao Xiaojun1, Jin Zhiming1, Cao Yuezhi1, Lu Junwei2
1. Department of Electrical Engineering North China Electric Power University Baoding 071003 China; 2. Griffith University Griffith School of Engineering Gold Coast 4222 Australia
Abstract:A fixed-point frequency domain algorithm based on the magnetic scalar and current vector potential is presented by using the complex exponential to approximate periodic variables. The DC biased problem in a laminated core is investigated and analyzed by the proposed method, in which the edge element is used to interpolate the current vector potential. The frequency-domain finite element equation is assembled to solve the two-dimensional nonlinear magnetic field taking electromagnetic coupling into account. The fixed-point permeability is introduced to decompose the coefficient matrix and decouples harmonic solutions, which reduce the memory requirements and computational time significantly. A laminated core model is employed to carry out the DC biasing experiment. The calculated results are compared with the experimental ones to verify the validity of the proposed method in computation and analysis of DC biased problems.
赵小军, 晋志明, 曹越芝, 鲁君伟. 基于磁标量位的定点频域算法及其在叠片铁心偏磁问题中的应用[J]. 电工技术学报, 2019, 34(17): 3590-3598.
Zhao Xiaojun, Jin Zhiming, Cao Yuezhi, Lu Junwei. A Fixed-Point Frequency Domain Method Based on Magnetic Scalar Potential and Its Application to the DC Biased Problem in the Laminated Core. Transactions of China Electrotechnical Society, 2019, 34(17): 3590-3598.
[1] 程志光, 高生, 李琳. 电气工程涡流问题的分析与验证[M]. 北京: 高等教育出版社, 2000. [2] 胡静竹, 刘涤尘, 廖清芬, 等. 基于有限元法的变压器电磁振动噪声分析[J]. 电工技术学报, 2016, 31(15): 81-88. Hu Jingzhu, Liu Dichen, Liao Qingfen, et al.Analysis of transformer electromagnetic vibration noise based on finite element method[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 81-88. [3] 张欣, 解超群, 祝丽花, 等. 考虑磁致伸缩效应的电机应力数值仿真与实验[J]. 电工技术学报, 2017, 32(增刊2): 50-55. Zhang Xin, Xie Chaoqun, Zhu Lihua, et al.Numerical simulation and experimental research on stress of motor including magnetostriction effects[J]. Transactions of China Electrotechnical Society, 2017, 32(S2): 50-55. [4] 郑天宇, 陈德智, 王雪, 等. 电流比较仪多层小气隙磁屏蔽磁场的解析解[J]. 电工技术学报, 2017, 32(21): 153-160. Zheng Tianyu, Chen Dezhi, Wang Xue, et al.Analytical solution of magnetic field for current comparator's multilayer shield with tiny air gap[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 153-160. [5] 赵小军, 李琳, 程志光, 等. 应用谐波平衡有限元法的变压器直流偏磁现象分析[J]. 中国电机工程学报, 2010, 30(21): 103-108. Zhao Xiaojun, Li Lin, Cheng Zhiguang, et al.Analysis of the DC bias phenomenon in transformers based on harmonic-balanced finite element method[J]. Proceedings of the CSEE, 2010, 30(21): 103-108. [6] 江鹏, 李敬, 张群, 等. 基于A-λ混合单元法的静磁场数值求解[J]. 电工技术学报, 2018, 33(5): 1167-1176. Jiang Peng, Li Jing, Zhang Qun, et al.Numerical simulation for magnetostatic problems based on A-λ mixed finite element method[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1167-1176. [7] 谢德馨, 姚缨英, 白保东, 等. 三维涡流场的有限元分析[M]. 北京: 机械工业出版社, 2001. [8] Tang Renyuan, Wang Shenghui, Li Yan, et al.Transient simulation of power transformers using 3D finite element model coupled to electric circuit equations[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1417-1420. [9] 颜威利, 杨庆新, 汪友华, 等. 电气工程电磁场数值分析[M]. 北京: 机械工业出版社, 2005. [10] 钱金根, 倪光正. 单标量磁位法在静态磁场数值计算中的应用[J]. 中国电机工程学报, 1995, 15(4): 228-233. Qian Jingen, Ni Guangzheng.Application of single scalar magnetic potential method in numerical calculation of static magnetic field[J]. Proceedings of the CSEE, 1995, 15(4): 228-233. [11] 石生. 三维非线性磁场的标量磁位描述[J]. 电力学报, 1997, 12(4): 15-19. Shi Sheng.Three-dimensional nonlinear magnetic field's scalar magnetic position description[J]. Acta Electric Power, 1997, 12(4): 15-19. [12] 王占辉, 高俊吉. 一种开域静磁场双标量位混合有限元边界元法研究[J]. 船电技术, 2013, 33(6): 19-21, 25. Wang Zhanhui, Gao Junji.A hybrid finite element-boundary element method with double scalar potentials for open boundary magnetostatic problems[J]. Ship Electric Technology, 2013, 33(6): 19-21, 25. [13] 郑文鹏, 施进浩, 屠关镇, 等. 电流域标量处理法在横向磁场电机三维磁场分析中的应用[J]. 电工技术学报, 2006, 21(6): 65-69, 88. Zheng Wenpeng, Shi Jinhao, Tu Guanzhen, et al.Scalar potential method in processing current-carrying regions for 3D field of transverse flux machine[J]. Transactions of China Electrotechnical Society, 2006, 21(6): 65-69, 88. [14] Yann L F, Christophe G, Dominique B, et al.A current transformer modeling[J]. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2002, 21(4): 505-511. [15] Bíró O, Koczka G, Preis K.Fast time-domain finite element analysis of 3-D nonlinear time-periodic eddy current problems with T0-Ф-Ф formulation[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1170-1173. [16] Gérard M, Christophe G, Yann L F.Circuit-coupled t0-phi formulation with surface impedance condition[J]. IEEE Transactions on Magnetics, 2008, 44(6): 730-733. [17] Gérard M, Yann L F, Christophe G.A nonlinear circuit coupled t-t0-φ formulation for solid conductors[J]. IEEE Transactions on Magnetics, 2003, 39(3): 1729-1732. [18] 陈志伟, 白保东, 陈德志, 等. 电力变压器直流偏磁现象形成机理及一种抑制措施的研究[J]. 电工技术学报, 2015, (14): 208-214. Chen Zhiwei, Bai Baodong, Chen Dezhi, et al.Research on the formation mechanism and supperssion method of transformer DC bias[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 208-214. [19] 王佳音, 白保东, 刘宏亮, 等. 直流偏磁对变压器振动噪声的影响[J]. 电工技术学报, 2015, 30(8): 56-61. Wang Jiayin, Bai Baodong, Liu Hongliang, et al, Research on vibration and noise of transformers under DC bias[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 56-61. [20] 李泓志, 崔翔, 刘东升, 等. 直流偏磁对三相电力变压器的影响[J]. 电工技术学报, 2010, 25(5): 88-96. Li Hongzhi, Cui Xiang, Liu Dongsheng, et al.Influence on three-phase power transformer by DC bias excitation[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 88-96. [21] Bíró O, Preis K.An efficient time domain method for nonlinear periodic eddy current problems[J]. IEEE Transactions on Magnetics, 2006, 42(4): 695-698. [22] 赵小军, 关大伟, 钟玉廷, 等. 应用于非线性涡流问题的定点谐波平衡改进算法[J]. 电工技术学报, 2017, 32(1): 214-221. Zhao Xiaojun, Guan Dawei, Zhong Yuting, et al.The improved fixed-point harmonic-balanced method for the nonlinear eddy current problems[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 214-221. [23] Bíró O, Preis K, Buchgraber G, et al.Voltage-driven coils in finite-element formulations using a current vector and a magnetic scalar potential[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1286-1289. [24] Jin Jianming.The finite element method in electromagnetics[M]. Hoboken: Wiley, 2014. [25] Hantila F, Preda G, Vasiliu M.Polarization method for static fields[J]. IEEE Transactions on Magnetics, 2000, 36(4): 672-675. [26] Koczka G, Auberhofer S, Bíró O, et al.Optimal convergence of the fixed-point method for nonlinear eddy current problems[J]. IEEE Transactions on Magnetics, 2009, 45(3): 948-951. [27] Zhao Xiaojun, Li Lin, Lu Junwei, et al.Analysis of the saturated electromagnetic devices under DC bias condition by the decomposed harmonic balance finite element method[J]. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2012, 31(2): 498-513.