Abstract:The high frequency current ripple affects the volume and weight of the converter inductor. For the quasi-switched-Boost inverter, the traditional shoot-through modulation algorithm cannot minimize the inductor current ripple. A space vector modulation method with the minimum inductor current ripple was proposed to redistribute the turn-on and turn-off sequences of the switches. On this basis, the mathematical relationship between the shoot-through ratio and the conduction duty ratio was derived. Finally, the performance of the proposed modulation algorithm and the traditional algorithm in suppressing the inductor current ripple was compared by simulations and experiments. The results can agree with the theoretical analysis.
[1] 王剑, 张芮, 刘洋, 等. 一种QZS-CHI的多调制波移相正弦脉宽调制方法及其输出电压分析[J]. 电工技术学报, 2020, 35(16): 3470-3477. Wang Jian, Zhang Rui, Liu Yang, et al.A multi-modulation waveform phase-shift sinusoidal pulse width modulation method of QZS-CHI and its output voltage analysis[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3470-3477. [2] 程启明, 江畅, 沈磊, 等. 准Z源三电平并网逆变器的无源控制策略[J]. 电工技术学报, 2020, 35(20): 4361-4372. Cheng Qiming, Jiang Chang, Shen Lei, et al.Passivity-based control strategy of quasi Z-source three-level grid-connected inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4361-4372. [3] 吴昊坤, 黄科元, 吕维, 等. 用于高速永磁电机的Z源逆变器直流链电压控制策略[J]. 电工技术学报, 2020, 35(16): 3489-3497. Wu Haokun, Huang Keyuan, Lü Wei, et al.Z-source inverter DC-link voltage control strategy for high speed permanent magnet motor[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3489-3497. [4] Fang Xupeng, Tian Yingying, Ding Xiaokang, et al.Series-type switched-inductor Z-source inverter[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(1): 53-60. [5] Noroozi N, Yaghoubi M, Zolghadri M R.A short-circuit fault diagnosis method for three-phase quasi-Z-source inverters[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 672-682. [6] Meraj M, Rahman S, Iqbal A, et al.Novel level-shifted PWM technique for equal power sharing among quasi-Z-source modules in cascaded multilevel inverter[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4766-4777. [7] 彭方成, 范学鑫, 王瑞田, 等. 大容量DC-DC变流器输出阻抗特性分析及应用[J]. 电工技术学报, 2021, 36(16): 3422-3432. Peng Fangcheng, Fan Xuexin, Wang Ruitian, et al.Analysis and application of output impedance characteristics of high-capacity DC-DC converter[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3422-3432. [8] 乔扬, 张笑天, 杨旭. 具有短路限流能力的大变比DC/DC变换器[J]. 电力系统自动化, 2020, 44(5): 47-52. Qiao Yang, Zhang Xiaotian, Yang Xu.Large-step-ratio DC/DC converter with capability of short-circuit current limiting[J]. Automation of Electric Power Systems, 2020, 44(5): 47-52. [9] 倪梦涵, 杨晓峰, 王淼, 等. 多电平均压型直流变换器输入电流纹波抑制策略[J]. 电工技术学报, 2021, 36(16): 3354-3364. Ni Menghan, Yang Xiaofeng, Wang Miao, et al.Input Current ripple suppression strategy of multilevel voltage-balancing DC-DC converter[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3354-3364. [10] Peng Fang zheng. Z-source inverter[J]. IEEE Transactions on Industry Applications, 2003, 39(2): 504-510. [11] 屈艾文, 陈道炼, 苏倩. 三相准Z源并网逆变器的简单升压改进空间矢量调制策略[J]. 电工技术学报, 2018, 33(4): 826-836. Qu Aiwen, Chen Daolian, Su Qian.Simple boost modified space vector modulation strategy for three-phase quasi-Z-source grid-connected inverter[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 826-836. [12] 王灿, 杜船, 徐杰雄. 中高压直流断路器拓扑综述[J]. 电力系统自动化, 2020, 44(9): 187-199. Wang Can, Du Chuan, Xu Jiexiong.Review of topologies for medium- and high-voltage DC circuit breaker[J]. Automation of Electric Power Systems, 2020, 44(9): 187-199. [13] 程启明, 李涛, 程尹曼, 等. 基于受控耗散Hamiltonian系统模型的光伏准Z源T型三电平并网逆变器控制策略[J]. 电工技术学报, 2019, 34(8): 1718-1727. Cheng Qiming, Li Tao, Cheng Yinman, et al.Control strategy of PV quasi-Z-source T-type three-level inverter based on port controlled Hamiltonian with dissipation model[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1718-1727. [14] Ho A V, Chun T W, Kim H G.Extended boost active-switched-capacitor/switched-inductor quasi-Z-source inverters[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5681-5690. [15] Chauhan A K, Raghuram M, Singh S K.Nonzero discontinuous inductor current mode in certain Z-source converters[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 2809-2814. [16] Dong Shuai, Zhang Qianfan.CCM and DCM analysis of ASC-qZSIs[J]. IET Power Electronics, 2019, 12(8): 2049-2057. [17] Nguyen M K, Choi Y O.PWM control scheme for quasi-switched-Boost inverter to improve modulation index[J]. IEEE Transactions on Power Electronics, 2018, 33(5): 4037-4044. [18] Nguyen M K, Tran T T, Lim Y C.A family of PWM control strategies for single-phase quasi-switched-Boost inverter[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1458-1469. [19] Tran T T, Choi J H, Nguyen M K, et al.A novel space vector modulation strategy for three-phase quasi switched Boost inverter[C]//2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia), Busan, Korea (South), 2019: 1084-1089. [20] Liu Yushan, Ge Baoming, Abu-Rub H, et al.Overview of space vector modulations for three-phase Z-source/quasi-Z-source inverters[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2098-2108. [21] Ali U S, Kamaraj V.A novel space vector PWM for Z-source inverter[C]//2011 1st International Conference on Electrical Energy Systems, Chennai, India, 2011: 82-85. [22] Dong Shuai, Zhang Qianfan, Cheng Shukang.Inductor Current ripple comparison between ZSVM4 and ZSVM2 for Z-source inverters[J]. IEEE Transactions on Power Electronics, 2016, 31(11): 7592-7597.