Frequency Adaptive Simulation of Transformer Inrush Current Based on the Augmented Dynamic Phasor Method
Gong Zhen1, Liu Chengxi1, Yao Liangzhong1, Yang Bo2, Zhuang Jun2, Huang Xiaohui3
1. School of Electrical Engineering and Automation Wuhan University Wuhan 430027 China; 2. China Electric Power Research Institute Nanjing 210003 China; 3. Nanjing Hexi Electric Co. Ltd Nanjing 210008 China
Abstract:The overshoot problem can be avoided by adopting small time step in electromagnetic simulations, and the inrush current of a large capacity transformer usually decays very slowly which will certainly results in low simulation efficiency. In this paper, an augmented dynamic phasor multi-timescale electromagnetic transient model was established for large-capacity transformer with nonlinear excitation branch, and a dynamic phasor flux prediction method was utilized. The current can be accurately predicted and simulated, which solves the overshoot problem of piecewise linearization under large time steps, and large time steps can be adopted without sacrificing more current harmonic components. When the inrush current occurred, a small-time step was adopted to predict the flux linkage, then magnetizing inrush current was obtained by current-flux curve fitting function. When the flux linkage spectrum was detected concentrated near the fundamental frequency, the flux linkage waveform will maintain its sinusoidal characteristics then a large time step can be adopted without sacrifice of simulation accuracy. In this way, the accurate inrush current was simulated utilizing current-flux curve fitting function, and the overshoot problem was solved using large step size to accelerate the simulation speed. Finally, the simulation results verified the correctness of the proposed transformer model and dynamic phasor prediction method.
龚振, 刘承锡, 姚良忠, 杨波, 庄俊, 黄晓辉. 基于增广动态相量法的变压器励磁涌流频率自适应仿真[J]. 电工技术学报, 2022, 37(15): 3805-3817.
Gong Zhen, Liu Chengxi, Yao Liangzhong, Yang Bo, Zhuang Jun, Huang Xiaohui. Frequency Adaptive Simulation of Transformer Inrush Current Based on the Augmented Dynamic Phasor Method. Transactions of China Electrotechnical Society, 2022, 37(15): 3805-3817.
[1] 姚蜀军, 刘畅, 汪燕, 等. 多频段时间尺度变换电磁暂态仿真研究[J]. 中国电机工程学报, 2019, 39(24): 7199-7208. Yao Shujun, Liu Chang, Wang Yan, et al.A research on multi-frequency band time-scale transformation for electromagnetic transients simulation[J]. Proceedings of the CSEE, 2019, 39(24): 7199-7208. [2] 李博, 包涌泉, 彭振东, 等. 基于改进型直流真空断路器弧后暂态仿真及介质恢复特性分析[J].电工技术学报,2021, 36(8): 1752-1760. Li Bo, Bao Yongquan, Peng Zhendong, et al.Post-arc transient simulation and dielectric recovery analysis based on improved dc vacuum circuit breaker[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1752-1760. [3] 吴嘉琪, 李晓华, 陈忠, 等. 考虑磁滞特性变压器PSCAD /EMTDC电磁暂态仿真建模方法及励磁差异性分析[J]. 中国电机工程学报, 2017, 37(5): 1543-1551. Wu Jiaqi, Li Xiaohua, Chen Zhong, et al.A transformer model with hysteresis characteristics for electromagnetic transients based on PSCAD /EMTDC and excitation difference analysis[J]. Proceedings of the CSEE, 2017, 37(5): 1543-1551. [4] 李春艳, 周念成, 王强钢, 等. 基于软启动的变压器励磁涌流抑制方法[J]. 电工技术学报, 2020, 35(17): 3640-3651. Li Chunyan, Zhou Niancheng, Wang Qianggang, et al.A method to eliminate transformer inrush currents using soft-starter-based controlled energization[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3640-3651. [5] 王小君, 毕成杰, 金程, 等. 电气化铁路不停电过分相电磁暂态及抑制措施研究[J]. 电工技术学报, 2021, 36(1): 191-202. Wang Xiaojun, Bi Chengjie, Jin Cheng, et al.Research on electromagnetic transient and suppression measures for passing neutral section without power interruption of electrified railway[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 191-202. [6] 任于展, 武仕朴, 汪友华, 等. 基于暂态电流差极值的电力变压器剩磁测量方法[J].电工技术学报, 2021, 37(5): 1088-1097. Ren Yuzhan, Wu Shipu, Wang Youhua, et al.Residual flux measurement method of power transformer based on extreme value of transient current difference[J]. Transactions of China Electrotechnical Society, 2021, 2021, 37(5): 1088-1097. [7] Fang Xupeng, Tian Yingying, Ding Xiaokang, et al.Series-type switched-inductor Z-source inverter[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(1): 53-60. [8] 洪潮, 张庆华, 张野, 等. 基于J-A磁滞模型的高效电磁暂态变压器建模[J]. 南方电网技术, 2020, 14(2): 75-83. Hong Chao, Zhang Qinghua, Zhang Ye, et al.Efficient electromagnetic transient modeling of transformer based on J-A hysteresis model[J]. Southern Power System Technology, 2020, 14(2): 75-83. [9] 孙洋,黄家栋. 基于非饱和区等效瞬时电感波形特征的变压器励磁涌流鉴别方法[J]. 电网技术, 2010, 34(3): 88-92. Sun Yang,Huang Jiadong.Identification of transformer magnetizing inrush based on waveform characteristics of equivalent instantaneous inductance in non-saturation zone[J]. Power System Technology, 2010, 34(3): 88-92. [10] 宋九渊, 符玲, 熊思宇, 等. 基于二阶泰勒系数的励磁涌流识别方法[J]. 中国电机工程学报, 2020, 40(3): 1020-1030. Song Jiuyuan, Fu Ling, Xiong Siyu, et al.Magnetizing inrush current identification method based on second-order Taylor derivative[J]. Proceedings of the CSEE, 2020, 40(3): 1020-1030. [11] 徐岩, 周霏霏. 基于幅值特征的变压器励磁涌流和故障电流的识别[J]. 电网技术, 2011, 35(9): 211-215. Xu Yan, Zhou Feifei.A method to distinguish inrush current of power transformer from fault current based on amplitude characteristics[J]. Power System Technology, 2011, 35(9): 211-215. [12] 司马文霞, 刘永来, 杨鸣, 等. 考虑铁心深度饱和的单相双绕组变压器改进π模型[J]. 中国电机工程学报, 2018, 38(24): 7131-7140. Sima Wenxia, Liu Yonglai, Yang Ming, et al.An improved π model for single-phase two winding transformers considering deep saturation of the iron core[J]. Proceedings of the CSEE, 2018, 38(24): 7131-7140. [13] 朱翊, 房大中, 王庆平. 考虑变压器励磁非线性的电磁暂态仿真算法[J]. 电网技术, 2012, 36(4): 116-120. Zhu Yi, Fang Dazhong, Wang Qingping.An approach for electromagnetic transient simulation of power transformers with nonlinear exciting branch[J]. Power System Technology, 2020, 14(2): 75-83. [14] Faruque M O, Dinavahi V, Wilsun X.Algorithms for the accounting of multiple switching events in digital simulation of power-electronic systems[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1157-1167. [15] Kuffel P, Kent K, Irwin G.The implementation and effectiveness of linear interpolation within digital simulation[J]. International Journal of Electrical Power, 1997, 19(4): 221-227. [16] 赵帅, 贾宏杰, 李建设, 等.一种考虑多重开关动作的变步长电磁暂态仿真算法[J]. 电工技术学报, 2016, 31(12): 177-183. Zhao Shuai, Jia Hongjie, Li Jianshe, et al.Variable step integration method on power system transient simulation with multiple switching events[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 177-183. [17] 姚蜀军, 屈秋梦, 蔡焱蒙, 等. 基于多频段动态相量法的MMC换流器建模方法[J]. 中国电机工程学报, 2020, 40(18): 5932-5942. Yao Shujun, Qu Qiumeng, Cai Yanmeng, et al.A research of modeling method of modular multilevel converter based on multi-frequency bands dynamic phasor[J]. Proceedings of the CSEE, 2020, 40(18): 5932-5942. [18] 王振浩, 李博文, 成龙, 等. 多电压等级直流配电网平均动态相量建模及稳定性分析[J]. 电力系统自动化, 2021, 45(10): 50-58. Wang Zhenhao, Li Bowen, Cheng Long, et al.Average dynamic phasor modeling and stability analysis of multi-voltage-level dc distribution network[J]. Automation of Electric Power Systems, 2021, 45(10): 50-58. [19] 高仕林, 宋炎侃, 陈颖, 等. 电力系统移频电磁暂态仿真原理及应用综述[J]. 电力系统自动化, 2021, 45(14): 173-183. Gao Shilin, Song Yankan, Chen Ying, et al.Overview on principle and application of shifted frequency based electromagnetic transient simulation for power system[J]. Automation of Electric Power Systems, 2021, 45(14): 173-183. [20] 解润生, 张国荣, 高凯, 等. 适用于频变输电线的动态相量谐波分析建模与仿真[J]. 电工技术学报, 2021, 36(15): 3200-3210. Jie Runsheng, Zhang Guorong, Gao Kai, et al.Modeling and simulation of dynamic phasor harmonic analysis for frequency-dependent transmission line[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3200-3210. [21] Shu Dewu, Xie Xiaorong, Yan Zheng, et al.A multi-domain co-simulation method for comprehensive shifted-frequency phasor dc-grid models and EMT ac-grid models[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10557-10574. [22] Xia Yue, Chen Ying, Song Yankan, et al.Multi-scale modeling and simulation of DFIG-based wind energy conversion system[J]. IEEE Transactions on Energy Conversion, 2020, 35(1): 560-572. [23] Gao Feng, Strunz K.Frequency-adaptive power system modeling for multiscale simulation of transients[J]. IEEE Transactions on Power System, 2009, 24(2): 561-571. [24] Xia Yue, Chen Ying, Song Yankan, et al.An efficient phase domain synchronous machine model with constant equivalent admittance matrix[J]. IEEE Transactions on Power Delivery, 2019, 34(3): 929-940. [25] Zhang Peng.Shifted frequency analysis for EMTP simulation of power system dynamics[D]. Vancouver: University of British Columbia, 2009. [26] Marti J, Dommel H, Bonatto B, et al.Shifted frequency analysis (SFA) concepts for EMTP modelling and simulation of power system dynamics[C]//2014 Power Systems Computation Conference (PSCC), Wroclaw, Poland, 2014: 1-8. [27] Gao Feng.Frequency-adaptive modeling for multi-scale simulation of transients in power systems[D]. Washington: University of Washington, 2008. [28] Gao Feng, Strunz, K.Modeling of constant distributed parameter transmission line for simulation of natural and envelope waveforms in power electric networks[C]//The 37th North American Power Symposium, Ames, IA, 2005: 247-252. [29] 陈颖. 基于宽频域移频理论的大规模交直流互联电网多时间尺度暂态建模与高性能仿真[D]. 北京: 清华大学, 2018: 9-12. [30] Shu Dewu, Dinavahi V, Xie Xiaorong, et al.Shifted frequency modeling of hybrid modular multilevel converters for simulation of MTDC grid[J] IEEE Transactions on Power Delivery, 2018, 33(3): 1288-1298. [31] Shu Dewu, Xie Xiaorong, Jiang Qirong, et al.A novel interfacing technique for distributed hybrid simulations combining EMT and transient stability models[J]. IEEE Transactions on Power Delivery, 2018, 33(1): 130-140. [32] Mudunkotuwa K, Filizadeh S, Annakkage U.Development of a hybrid simulator by interfacing dynamic phasors with electromagnetic transient simulation[J]. IET Generation Transmission & Distribution, 2017, 11(12): 2991-3001. [33] EMTDC manual[Z].EMTDC manual[Z]. Winnipeg: Manitoba HVDC Research Center, 2003. [34] 商莹. 电磁暂态算法比较及非线性模型研究[D]. 济南: 山东大学, 2009. [35] Chiesa N, Høidalen H.Modeling of nonlinear and hysteretic iron-core inductors in ATP[C]//European EMTP-ATP Conference, Leon, Spain, 2008: 118-123. [36] 张建松, 何奔腾, 张雪松. 变压器衰减励磁涌流的实用计算方法[J]. 电力系统自动化, 2005, 29(12): 57-60. Zhang Jiansong, He Benteng, Zhang Xuesong.Approach to calculate attenuated magnetizing inrush current in transformer[J]. Automation of Electric Power Systems, 2005, 29(12): 57-60. [37] Xia Yue, Chen Ying, Ye Hua, et al.Multi-scale induction machine modeling in the dq0 domain including main flux saturation[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 652-664. [38] 卢王允, 曹勇敢, 李苗苗. 基于小波分析的变压器励磁涌流识别判据研究[J]. 电气技术, 2014, 4(12): 8-12. Lu Wangyun, Cao Yonggan, Li Miaomiao.Research on transformer magnetizing inrush current identification criterion based on wavelet analysis[J]. Electrical Engineering, 2014, 4(12): 8-12. [39] 王迎迎, 袁建生. 铁心材料饱和磁化强度的偏差对求解变压器涌流的影响(英文)[J]. 电工技术学报, 2019, 34(12): 2452-2459. Wang Yingying, Yuan Jiansheng.Influence of the error of saturation magnetization of core material on the solution of transformer inrush current[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2452-2459.