Maximum Ratio of Torque to Copper Loss Control of Hybrid Excited Flux Switching Motor Based on Combination Algorithm
Li Shuai1, Ding Wen2, Li Ke2
1. State Grid Shanxi Electric Power Research Institute Taiyuan 030001 China; 2. School of Electrical Engineering Xi’an Jiaotong University Xi’an 710049 China
Abstract:Hybrid excited flux switching machines (HEFSMs) have the advantages of permanent magnet flux switching motor and hybrid excitation synchronous motor. The air gap magnetic field can be adjusted by adjusting the excitation current. This kind of motor has a wide application prospect in industry, especially in the field of electric vehicles. In this paper, an optimized maximum ratio of torque to copper loss control strategy for HEFSM in full speed range is proposed. In the low speed constant torque region, the optimized excitation current is used to improve the load capacity and minimize the copper loss. It has a faster response speed than the random combination strategy of excitation current and armature current and the control strategy of zero excitation current. In the constant power range, the objective function of copper loss is established, and the constraints are torque, current, voltage and speed. The optimized negative excitation current and d-axis current can not only obtain higher speed and reluctance torque, but also achieve the maximum ratio of torque to copper loss under a certain torque value, which can expand the speed range and improve the efficiency. Finally, a motor system experimental platform based on dSPACE1103 is built, and the feasibility and effectiveness of the proposed control strategy are verified by experiments.
李帅, 丁文, 李可. 基于组合算法的混合励磁磁通切换电大转矩铜耗比控制[J]. 电工技术学报, 2022, 37(7): 1654-1665.
Li Shuai, Ding Wen, Li Ke. Maximum Ratio of Torque to Copper Loss Control of Hybrid Excited Flux Switching Motor Based on Combination Algorithm. Transactions of China Electrotechnical Society, 2022, 37(7): 1654-1665.
[1] 顾惠, 王宇. 开路及短路组合故障下容错型永磁磁通切换电机转矩冲量平衡控制策略的研究[J]. 电工技术学报, 2020, 35(9): 1931-1944. Gu Hui, Wang Yu.Research on torque impulse balance control strategy of fault tolerant flux switching permanent magnetic motor under combined open and short circuit faults[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1931-1944. [2] 程明, 文宏辉, 曾煜, 等. 电机气隙磁场调制行为及其转矩分析[J]. 电工技术学报, 2020, 35(5): 921-930. Cheng Ming, Wen Honghui, Zeng Yu, et al.Analysis of airgap field modulation behavior and torque component in electric machines[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 921-930. [3] 於锋, 程明, 田朱杰, 等. 九相磁通切换永磁电机主动缺相运行控制策略[J]. 电工技术学报, 2019, 34(8): 1626-1635. Yu Feng, Cheng Ming, Tian Zhujie, et al.Active phase-deficient control of a nine-phase flux-switching permanent magnet machine[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1626-1635. [4] 曹瑞武, 苏恩超, 张学. 轨道交通用次级分段型直线磁通切换永磁电机研究[J]. 电工技术学报, 2020, 35(5): 1001-1012. Cao Ruiwu, Su Enchao, Zhang Xue.Investigation of linear flux-switching permanent magnet motor with segmented secondary for rail transit[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1001-1012. [5] 张源, 王宇, 肖文妍, 等. 永磁磁通切换电机转矩冲量平衡控制优化切换控制策略[J]. 电工技术学报, 2019, 34(7): 1404-1412. Zhang Yuan, Wang Yu, Xiao Wenyan, et al.Optimal switching control strategy for torque impulse balance control of permanent magnet flux switching motor[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1404-1412. [6] Ullah W, Khan F, Sulaiman E, et al.Torque characteristics of high torque density partitioned PM consequent pole flux switching machines with flux barriers[J]. China Electrotechnical Society Transa- ctions on Electrical Machines and Systems, 2020, 4(2): 130-141. [7] Ullah W, Khan F, Umair M.Design and optimization of segmented PM consequent pole hybrid excited flux switching machine for EV/HEV application[J]. China Electrotechnical Society Transactions on Electrical Machines and Systems, 2020, 4(3): 206-214. [8] Hua Wei, Cheng Ming, Zhang Gan.A novel hybrid excitation flux-switching motor for hybrid vehicles[J]. IEEE Transactions on Magnetics, 2009, 45(10): 4728-4731. [9] Zhao Jilong, Jing Mengdie, Sun Xiangdong, et al.Unity power factor control of hybrid excited axial field flux-switching mermanent magnet machine[C]// 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 2017: 1-5. [10] Pothi N, Zhu Ziqiang, Afinowi A A, et al.Control strategy for hybrid-excited switched-flux permanent magnet machines[J]. IET Electric Power Applications, 2015, 9(9): 612-619. [11] Wang Yu, Deng Zhiquan.Hybrid excitation topo- logies and control strategies of stator permanent magnet machines for DC power system[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4601-4616. [12] Hua Wei, Huang Wentao, Yu Feng.Improved model predictive flux control strategy for three-phase four switch inverter fed flux reversal permanent magnet machine drives[J]. IET Electric Power Applications, 2017, 11(5): 717-728. [13] Shinnaka S, Sagawa T.New optimal current control methods for energy-efficient and wide speed-range operation of hybrid-field synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2443-2450. [14] 董广鹏. 新型混合励磁磁通切换电机的控制策略研究[D]. 南京: 东南大学, 2012. [15] 廖金国. 混合励磁磁通切换电机优化调磁策略研究[D]. 南京: 东南大学, 2015. [16] 孟建建. 六相磁通切换永磁电机控制策略与驱动系统研究[D]. 南京: 东南大学, 2017. [17] 张宗盛. 混合励磁磁通切换型磁阻电机系统的研究[D]. 济南: 山东大学, 2015. [18] Zhang Gan, Hua Wei, Cheng Ming.Rediscovery of permanent magnet flux-switching machines applied in EV/HEVs: summary of new topologies and control strategies[J]. Chinese Journal of Electrical Engineering, 2016, 2(2): 717-728. [19] 赵纪龙, 林明耀, 徐妲, 等. 混合励磁轴向磁场磁通切换电机弱磁控制[J]. 中国电机工程学报, 2015, 35(19): 5059-5068. Zhao Jilong, Lin Mingyao, Xu Da, et al.Flux- weakening control of hybrid excited axial field flux-switching machines[J]. Proceedings of the CSEE, 2015, 35(19): 5059-5068. [20] 赵纪龙, 景梦蝶, 林明耀, 等. 基于矢量控制的混合励磁轴向磁场磁通切换永磁电机分区控制策略[J]. 中国电机工程学报, 2017, 37(22): 6567-6577. Zhao Jilong, Jing Mengdie, Lin Mingyao, et al.A zone control scheme of hybrid excited axial field flux-switching permanent magnet machine with vector control[J]. Proceedings of the CSEE, 2017, 37(22): 6567-6577.