Review and Prospect of Software Digital Design for Electric Vehicle Power Control Unit
He Shaomin1, Yang Huan1, Wang Haibing2, Shen Jie3, Li Wuhua1
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. Intelligent Manufacturing College Taizhou University Taizhou 318000 China; 3. Leadrive Technology (Shanghai) Co. Ltd Shanghai 201315 China
Abstract:As the core component of electric vehicles (EV), the high safety and high performance requirements of power control unit (PCU) have led to the great challenges of high coverage and high efficiency for the PCU software design and verification. With the advantages of good flexibility, high efficiency and low cost, digital design is expected to be an effective way to follow the trend of power electronic design automation (PEDA). In this paper, the state-of-the-art developments in the digital design and verification of PCU software are thoroughly reviewed from the aspects of digital platform, mathematical modeling and numerical algorithm. Especially, the basic structures of digital platform are discussed and summarized, the modeling methods and numerical algorithms are detailedly introduced and evaluated from the criteria of fidelity, speed and complexity. Finally, the major challenges and future possible research topics of PEDA are prospected.
何绍民, 杨欢, 王海兵, 沈捷, 李武华. 电动汽车功率控制单元软件数字化设计研究综述及展望[J]. 电工技术学报, 2021, 36(24): 5101-5114.
He Shaomin, Yang Huan, Wang Haibing, Shen Jie, Li Wuhua. Review and Prospect of Software Digital Design for Electric Vehicle Power Control Unit. Transactions of China Electrotechnical Society, 2021, 36(24): 5101-5114.
[1] International Energy Agency.Global EV outlook 2020[Z]. 2020. [2] 吴理豪, 张波. 电动汽车静态无线充电技术研究综述(上篇)[J]. 电工技术学报, 2020, 35(6):1153-1165. Wu Lihao, Zhang Bo.Overview of static wireless charging technology for electric vehicles: part Ⅰ[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1153-1165. [3] 张栋, 范涛, 温旭辉, 等. 电动汽车用高功率密度碳化硅电机控制器研究[J]. 中国电机工程学报, 2019, 39(19): 5624-5634, 5890. Zhang Dong, Fan Tao, Wen Xuhui, et al.Research on high power density SiC motor drive controller[J]. Proceedings of the CSEE, 2019, 39(19): 5624-5634, 5890. [4] 张军, 张犁, 成瑜. IGBT模块寿命评估研究综述[J].电工技术学报, 2021, 36(12): 2560-2575. Zhang Jun, Zhang Li, Cheng Yu.Review of the lifetime evaluation for the IGBT module[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(12): 2560-2575. [5] 赵争鸣, 袁立强, 鲁挺. 电力电子系统电磁瞬态过程[M]. 北京: 清华大学出版社, 2017. [6] Bélanger J, Venne P, Paquin J N.The what, where, and why of real-time simulation[J]. Planet RT, 2010, 1(1): 37-49. [7] 袁立强, 陆子贤, 孙建宁, 等. 电能路由器设计自动化综述—设计流程架构和遗传算法[J]. 电工技术学报, 2020, 35(18): 3878-3893. Yuan Liqiang, Lu Zixian, Sun Jianning, et al.Design automation for electrical energy router-design work- flow framework and genetic algorithm: a review[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3878-3893. [8] Hermanns K, Peng Y, Mantooth A.The increasing role of design automation in power electronics: gathering what is needed[J]. IEEE Power Electronics Magazine, 2020, 7(1): 46-50. [9] 袁立强, 陆子贤, 戴宇轩, 等. 高性能电力电子设计自动化求解器关键因素与解决方法[J]. 中国电机工程学报, 2021, 41(20): 7055-7068. Yuan Liqiang, Lu Zixian, Dai Yuxuan, et al.Key factors and methodology of high-performance design automation solver for power electronics[J]. Proceedings of the CSEE, 2021, 41(20): 7055-7068. [10] Vardhan H, Akin B, Jin H.A low-cost, high-fidelity processor-in-the loop platform: for rapid prototyping of power electronics circuits and motor drives[J]. IEEE Power Electronics Magazine, 2016, 3(2): 18-28. [11] Zhu W, Pekarek S, Jatskevich J, et al.A model- in-the-loop interface to emulate source dynamics in a zonal DC distribution system[J]. IEEE Transactions on Power Electronics, 2005, 20(2): 438-445. [12] 施博辰, 赵争鸣, 朱义诚, 等. 电力电子混杂系统多时间尺度离散状态事件驱动仿真方法[J]. 中国电机工程学报, 2021, 41(9): 2980-2990. Shi Bochen, Zhao Zhengming, Zhu Yicheng, et al.Discrete-state event-driven simulation approach for multi-time-scale power electronic hybrid system[J]. Proceedings of the CSEE, 2021, 41(9): 2980-2990. [13] Demers S, Gopalakrishnan P, Kant L.A generic solution to software-in-the-loop[C]//IEEE Military Communications Conference (MILCOM), Orlando, FL, USA, 2007: 1-6. [14] Mojlish S, Erdogan N, Levine D, et al.Review of hardware platforms for real-time simulation of electric machines[J]. IEEE Transactions on Trans- portation Electrification, 2017, 3(1): 130-146. [15] Upamanyu K, Narayanan G.Improved accuracy, modeling and stability analysis of power-hardware- in-loop simulation with open-loop inverter as power amplifier[J]. IEEE Transactions on Industrial Elec- tronics, 2020, 67(1): 369-378. [16] Shen Jie.Modeling methodologies for analysis and synthesis for controls and modulation schemes for high-power converters with low pulse ratios[D]. Verlag: E.ON Energy Research Center, RWTH Aachen University, 2013. [17] Plexim GmbH: PLECS user manual[EB/OL]. Zurich, Switzerland: Plexim GmbH, 2021[2021-08-29]. https://www.plexim.com/download/documentation. [18] POWERSIM Inc.: PSIM user’s guide[EB/PL]. USA: Powersim Inc., 2021[2021-08-29]. https://powersimtech.com/support/resources/tutorials/psim-user-manual/. [19] Ruba M, Nemes R O, Ciornei S M, et al.Digital twin real-time FPGA implementation for light electric vehicle propulsion system using emr organiza- tion[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC2019), Hanoi, Vietnam, 2019: 1-6. [20] 周二专, 冯东豪, 严剑峰, 等. 秒级响应电网在线分析软件平台[J]. 电网技术, 2020, 44(9): 3474-3480. Zhou Mike, Feng Donghao, Yan Jianfeng, et al.A software platform for second-order responsiveness power grid online analysis[J]. Power System Tech- nology, 2020, 44(9): 3474-3480. [21] 贺兴, 艾芊, 朱天怡, 等. 数字孪生在电力系统应用中的机遇和挑战[J]. 电网技术, 2020, 44(6): 2009-2019. He Xing, Ai Qian, Zhu Tianyi, et al.Opportunities and challenges of the digital twin in power system applications[J]. Power System Technology, 2020, 44(6): 2009-2019. [22] Hao Bai, Chen Liu, Breaz E, et al.A review on the device-level real-time simulation of power electronic converters: motivations for improving performance[J]. IEEE Industrial Electronics Magazine, 2021, 15(1): 12-27. [23] 杨庆文, 何绍民, 杨欢, 等. 考虑故障特性模拟的虚拟电机系统及其控制[J]. 电工技术学报, 2020, 35(6): 1239-1250. Yang Qingwen, He Shaomin, Yang Huan, et al.Virtual motor system considering fault characteristic simulation and its control strategy[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1239-1250. [24] Wang Bin, Ma Kai, Huang Xin, et al.Fault injection test for MCU based on e-motor emulator[C]//2019 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE), Sanya, China, 2019: 267-269. [25] Saito K, Akagi H.A real-time real-power emulator of a medium-voltage high-speed induction motor loaded with a centrifugal compressor[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 4821-4833. [26] Liebig S, Schmitt A, Hammerer H.High-dynamic high-power e-motor emulator for power electronic testing[C]//International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2018), Nuremberg, Germany, 2018: 1-5. [27] Oettmeier M, Bartelt R, Heising C, et al.Power- electronic-based machine emulator for high-power high-frequency drive converter test[C]//2010 IEEE Vehicle Power and Propulsion Conference, Lille, 2010, DOI: 10.1109/VPPC.2010.5728988. [28] Ren W, Steurer M, Baldwin T L.Improve the stability and the accuracy of power hardware- in-the-loop simulation by selecting appropriate interface algorithms[J]. IEEE Transactions on Industry Applications, 2008, 44(4): 1286-1294. [29] 汤涌. 电力系统数字仿真技术的现状与发展[J]. 电力系统自动化, 2002, 26(17): 66-70. Tang Yong.Present situation and development of power system simulation technologies[J]. Automa- tion of Electric Power Systems, 2002, 26(17): 66-70. [30] Shu Dewu, Wei Yingdong, Dinavahi V, et al.Cosimulation of shifted-frequency/dynamic phasor and electromagnetic transient models of hybrid LCC-MMC DC grids on integrated CPU-GPUs[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6517-6530. [31] 王智颖. 基于多FPGA的有源配电网可扩展实时仿真方法与系统设计[D]. 天津: 天津大学, 2018. [32] The MathWorks, Inc. Simulink user’s guide[EB/OL]. Natick, MA: The MathWorks, Inc., 2021[2021-08-29]. https://www.mathworks.com/help/pdf_doc/simulink. [33] POWERSIM Inc.: DSIM user’s guide[EB/PL]. USA: Powersim Inc., 2021[2021-08-29]. https://powersimtech.com/resources/dsim/dsim-users-manual/. [34] Zhou Mike, Yan Jianfeng, Feng Donghao.Digital twin framework and its application to power grid online analysis[J]. CSEE Journal of Power and Energy Systems, 2019, 5(3): 391-398. [35] Bélanger J, Lapointe V, Dufour C, et al.eMEGAsim: An open high-performance distributed real-time power grid simulator[C]//Architecture and Specification, 2007, DOI: eMEGAsim: An open high-performance distributed real-time power grid simulator[C]//Architecture and Specification, 2007, DOI: http://dx.doi.org/. [36] 孙鹏琨, 葛琼璇, 王晓新, 等. 基于硬件在环实时仿真平台的高速磁悬浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(16): 3426-3435. Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, et al.Traction control strategy of high-speed maglev train based on hardware-in-the-loop real-time simulation platform[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3426-3435. [37] Milovanović S, Dujić D.Comprehensive comparison of modular multilevel converter internal energy balancing methods[J] IEEE Transactions on Power Electronics, 2021, 36(8): 8962-8977. [38] Jin Xiao, Nian Heng.Overvoltage suppression strategy for sending AC grid with high penetration of wind power in the LCC-HVDC system under commutation failure[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10265-10277. [39] Xiang Jinwen, Xu Jiazhu, Wang Hongliang, et al.Reconfigurable line-side converter for DC voltage matching and ripple suppression in multisystem locomotives[J]. IEEE Transactions on Power Elec- tronics, 2021, 36(5): 5832-5844. [40] 沈卓轩, 姜齐荣. 电力系统电磁暂态仿真IGBT详细建模及应用[J]. 电力系统自动化, 2020, 44(2): 235-247. Shen Zhuoxuan, Jiang Qirong.Detailed IGBT mode- ling and applications of electromagnetic transient simulation in power system[J]. Automation of Electric Power Systems, 2020, 44(2): 235-247. [41] 王成山, 高菲, 李鹏, 等. 电力电子装置典型模型的适应性分析[J]. 电力系统自动化, 2012, 36(6): 63-68. Wang Chengshan, Gao Fei, Li Peng, et al.Adaptabi- lity analysis of typical power electronic device models[J]. Automation of Electric Power Systems, 2012, 36(6): 63-68. [42] 贺杨烊, 郑晓冬, 邰能灵, 等. 交直流混联电网LCC-HVDC换流器建模方法综述[J]. 中国电机工程学报, 2019, 39(11): 3119-3130. He Yangyang, Zheng Xiaodong, Tai Nengling, et al.A review of modeling methods for LCC-HVDC converter in AC/DC hybrid power grid[J]. Pro- ceedings of the CSEE, 2019, 39(11): 3119-3130. [43] Pejovic P, Maksimovic D.A method for fast time- domain simulation of networks with switches[J]. IEEE Transactions on Power Electronics, 1994, 9(4): 449-456. [44] 徐晋, 汪可友, 李国杰, 等. 基于响应匹配的电力电子换流器恒导纳建模[J]. 中国电机工程学报, 2019, 39(13): 3879-3889. Xu Jin, Wang Keyou, Li Guojie, et al.Fixed- admittance modeling of power electronic converters using response matching technique[J]. Proceedings of the CSEE, 2019, 39(13): 3879-3889. [45] Mu Qing, Liang Jun, Zhou Xiaoxin, et al.Improved ADC model of voltage-source converters in DC grids[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 5738-5748. [46] Jin H.Behavior-mode simulation of power electronic circuits[J]. IEEE Transactions on Power Electronics, 1997, 12(3): 443-452. [47] He Shaomin, Xu Zhiwei, Chen Min, et al.General derivation law with torque-free achieving of integral on-board charger on compact powertrains[J] IEEE Transactions on Industrial Electronics, 2021, 68(2): 1791-1802. [48] 夏越, 陈颖, 宋炎侃, 等. 基于自适应移频分析法的Voltage-Behind-Reactance异步电机多时间尺度暂态建模与仿真[J]. 电网技术, 2018, 42(12): 3872-3881. Xia Yue, Chen Ying, Song Yankan, et al.Voltage- behind-reactance induction machine model for multi-timescale transient[J]. Power System Techno- logy, 2018, 42(12): 3872-3881. [49] Huang Y, Chapariha M, Therrien F, et al.A constant-parameter voltage-behind-reactance synch- ronous machine model based on shifted-frequency analysis[J]. IEEE Transactions on Energy Conversion, 2015, 30(2): 1-11. [50] Veltman A, Pulle D W J, De Doncker R. Fundamentals of electrical drives[M]. Netherlands: Springer, 2007. [51] Yilmaz M, Krein P T.Capabilities of finite element analysis and magnetic equivalent circuits for elec- trical machine analysis and design[C]//Proceedings of IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008, DOI: 10.1109/PESC.2008. 4592584. [52] 胡畔, 陈红坤, 陈孟忻, 等. 基于动态相量法的改进多端模块化多电平换流器HVDC小干扰稳定模型[J]. 电工技术学报, 2017, 32(24): 193-204. Hu Pan, Chen Hongkun, Chen Mengxin, et al.Advanced small-signal stability model for multi- terminal modular multilevel converter-HVDC systems based on dynamic phasors[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 193-204. [53] 姚蜀军, 屈秋梦, 蔡焱蒙, 等. 基于多频段动态相量法的MMC换流器建模方法[J]. 中国电机工程学报, 2020, 40(18): 5932-5942. Yao Shujun, Qu Qiumeng, Cai Yanmeng, et al.Research of modeling method of modular multilevel converter based on multi-frequency bands dynamic phasor[J]. Proceedings of the CSEE, 2020, 40(18): 5932-5942. [54] 宋钊, 舒德兀, 严正, 等. 采用时频坐标变换的大规模交直流系统多模态仿真方法[J]. 电力系统自动化, 2020, 44(5):130-137. Song Zhao, Shu Dewu, Yan Zheng, et al.Multi- domain simulation method for large-scale AC/DC systems based on time-frequency coordination trans- form[J]. Automation of Electric Power Systems, 2020, 44(5): 130-137. [55] Alimeling J H, Hammer W P.PLECS-piece-wise linear electrical circuit simulation for Simulink[C]//Proceedings of the IEEE 1999 International Con- ference on Power Electronics and Drive Systems, Hong Kong, China, 1999: 355-360. [56] 王成山, 李鹏, 黄碧斌, 等. 一种计及多重开关的电力电子时域仿真插值算法[J]. 电工技术学报, 2010, 25(6): 83-88. Wang Chengshan, Li Peng, Huang Bibin, et al.An interpolation algorithm for time-domain simulation of power electronics circuit considering multiple switching events[J]. Transactions of China Electro- technical Society, 2010, 25(6): 83-88. [57] 舒德兀, 张春朋, 姜齐荣, 等. 电力电子仿真中开关时刻自校正插值算法[J]. 电网技术, 2016, 40(5): 1455-1461. Shu Dewu, Zhang Chunpeng, Jiang Qirong, et al.A switching point self-correction interpolation algo- rithm for power electronic simulations[J]. Power System Technology, 2016, 40(5): 1455-1461. [58] Migoni G, Kofman E, Bergero F, et al.Quantization based simulation of switched mode power supplies[J]. Simulation Transactions of the Society for Modeling & Simulation International, 2015, 91(4): 320-336. [59] Zhao Zhengming, Tan Don, Shi Bochen, et al.A breakthrough in design verification of megawatt power electronic systems[J]. IEEE Power Electronics Magazine, 2020, 7(3): 36-43. [60] Shi Bochen, Zhao Zhengming, Zhu Yicheng.Piecewise analytical transient model for power switching device commutation unit[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5720-5736. [61] Cellier F E, Kofman E.Continuous System Simulation[M]. Boston, MA: Springer, 2006.