Abstract:This paper proposed an improved algorithm for partial discharge pattern recognition based on the attribute space of histogram of oriented gradient (HOG), aiming to enhance the summary ability of features and overcome the limitation of traditional classifier for the high-dimensional features. Firstly, the partial discharge phase resolved pulse sequence (PRPS) patterns were constructed as the recognition basis. And the HOG attribute space of PRPS images was formed automatically by the iterative algorithm of local cell superimposed slipped window. Secondly, in order to satisfy the mutual independence, the HOG attribute space was reconstructed by linear transformation of covariance matrix and was rearranged according to attribute importance. Thirdly, the number of attributes input to the Naïve Bayesian classifier was sequentially increased, and then the best attribute subset was obtained based on the classification accuracy. After weighting the reduced attribute according to their relative importance, the HOG attribute selective weighted naïve bayes classifier was finally designed. The test results of a large number of samples prove that the improved algorithm can achieve high recognition accuracy, and has an obvious optimization effect and good application value.
[1] 李军浩, 韩旭涛, 刘泽辉, 等. 电气设备局部放电检测技术述评[J]. 高电压技术, 2015, 41(8): 116-134. Li Junhao, Han Xutao, Liu Zehui, et al.Review on partial discharge measurement technology of electri- cal equipment[J]. High Voltage Engineering, 2015, 41(8): 116-134. [2] 李臻, 罗林根, 盛戈皞, 等. 基于压缩感知的特高频局部放电定位法[J]. 电工技术学报, 2018, 33(1): 202-208. Li Zhen, Luo Lingen, Sheng Gehao, et al.Ultrahigh frequency partial discharge localization methodology based on compressed sensing[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 202-208. [3] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 659-668. Zhu Yufeng, Xu Yongpeng, Chen Xiaoxin, et al.Pattern recognition of partial discharges in DC XLPE cables based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 659-668. [4] 唐志国, 唐铭泽, 李金忠, 等. 电气设备局部放电模式识别研究综述[J]. 高电压技术, 2017, 43(7): 173-187. Tang Zhiguo, Tang Mingze, Li Jinzhong, et al.Review on partial discharge pattern recognition of electrical equipment[J]. High Voltage Engineering, 2017, 43(7): 173-187. [5] Lapp A, Kranz H G.The use of the CIGRE data format for PD diagnosis applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(1): 102-112. [6] 李正明, 钱露先, 李加彬. 基于统计特征与概率神经网络的变压器局部放电类型识别[J]. 电力系统保护与控制, 2018, 46(13): 55-60. Li Zhengming, Qian Luxian, Li Jiabin.Type recogni- tion of partial discharge in power transformer based on statistical characteristics and PNN[J]. Power System Protection and Control, 2018, 46(13): 55-60. [7] 许永鹏, 杨丰源, 段大鹏, 等. 基于NSCT和IA-AP聚类的直流电缆局放信号图特征提[J]. 高电压技术, 2017, 43(2): 438-445. Xu Yongpeng, Yang Fengyuan, Duan Dapeng, et al.Feature extraction for PD in DC XLPE cable based on NSCT and IA-AP clustering[J]. High Voltage Engin- eering, 2017, 43(2): 438-445. [8] 任先文, 薛雷, 宋阳, 等. 基于分形特征的最小二乘支持向量机局部放电模式识别[J]. 电力系统保护与控制, 2011, 39(14): 143-147. Ren Xianwen, Xue Lei, Song Yang, et al.The pattern recognition of partial discharge based on fractal characteristics using LS-SVM[J]. Power System Pro- tection and Control, 2011, 39(14): 143-147. [9] 高凯, 谈克雄, 李福祺, 等. 利用矩特征进行发电机线棒模型的局部放电模式识别[J]. 电工技术学报, 2001, 16(4): 62-65. Gao Kai, Tan Kexiong, Li Fuqi, et al.The use of moment features for recognition of partial discharges in generator stator winding models[J]. Transactions of China Electrotechnical Society, 2001, 16(4): 62-65. [10] 魏振, 齐波, 左健, 等. 基于局部放电图像特征的换流变压器油纸绝缘缺陷诊断方法[J]. 电网技术, 2015, 39(4): 1160-1166. Wei Zhen, Qi Bo, Zuo Jian, et al.A method to diagnose defects in oil-paper insulation of converter transformer based on image feature of partial discharge[J]. Power System Technology, 2015, 39(4): 1160-1166. [11] 唐炬, 李伟, 欧阳有鹏. 采用小波变换奇异值分解方法的局部放电模式识别[J]. 高电压技术, 2010, 36(7): 103-108. Tang Ju, Li Wei, Ouyang Youpeng.Partial discharge pattern recognition using discrete wavelet transform and singular value decomposition[J]. High Voltage Engineering, 2010, 36(7): 103-108. [12] 赵煦, 刘晓航, 孟永鹏, 等. 采用小波包树能量矩阵奇异值分解的局部放电模式识别[J]. 西安交通大学学报, 2017, 51(8): 116-121. Zhao Xu, Liu Xiaohang, Meng Yongpeng, et al.Partial discharge pattern classification by singular value decomposition of wavelet packet energy features[J]. Journal of Xi'an Jiaotong University, 2017, 51(8): 116-121. [13] 韩宝国, 马驰, 李静鹏, 等. 基于DTCWT与LLE算法的变压器局部放电特高频信号特征参数提取方法[J]. 电力系统保护与控制, 2019, 47(20): 65-72. Han Baoguo, Ma Chi, Li Jingpeng, et al.A feature parameters extraction method of PD UHF signal based on DTCWT and LLE algorithm[J]. Power System Protection and Control, 2019, 47(20): 65-72. [14] 秦雪, 钱勇, 许永鹏, 等. 基于2D-LPEWT的特征提取方法在电缆局部放电分析中的应用[J]. 电工技术学报, 2019, 34(1): 170-178. Qin Xue, Qian Yong, Xu Yongpeng, et al.Application of feature extraction method based on 2D-LPEWT in cable partial discharge analysis[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 170-178. [15] 律方成, 谢军, 李敏, 等. 局部放电稀疏分解模式识别方法[J]. 中国电机工程学报, 2016, 36(10): 2836-2845. Lü Fangcheng, Xie Jun, Li Min, et al.A partial discharge pattern recognition method based on sparse decomposition[J]. Proceedings of the CSEE, 2016, 36(10): 2836-2845. [16] 律方成, 张波. 基于LLE降维和BP_Adaboost分类器的GIS局部放电模式识别[J]. 电测与仪表, 2014, 51(15): 37-41. Lü Fangcheng, Zhang Bo.Pattern recognition of GIS discharge types based on LLE dimensionality redu- ction and BP_Adaboost classifier[J]. Electrical Measure- ment and Instrumentation, 2014, 51(15): 37-41. [17] 许永鹏, 杨丰源, 钱勇, 等. 基于改进ECOC分类器的直流电缆终端接头局放模式识别[J]. 中国电机工程学报, 2017, 37(4): 331-339. Xu Yongpeng, Yang Fengyuan, Qian Yong, et al.Pattern recognition of PD in DC cable terminal joint based on the improved ECOC classifier[J]. Pro- ceedings of the CSEE, 2017, 37(4): 331-339. [18] 苏松志, 李绍滋, 陈淑媛, 等. 行人检测技术综述[J]. 电子学报, 2012, 40(4): 814-820. Su Songzhi, Li Shaozi, Chen Shuyuan, et al.A survey on pedestrian detection[J]. Acta Electronica Sinica, 2012, 40(4): 814-820. [19] 蒋良孝. 朴素贝叶斯分类器及其改进算法研究[D]. 武汉: 中国地质大学, 2009. [20] 杨忠强. 基于属性加权和归约的朴素贝叶斯算法研究[D]. 广西: 广西大学, 2013. [21] 邓维斌, 王国胤, 王燕. 基于Rough Set的加权朴素贝叶斯分类算法[J]. 计算机科学, 2007, 34(2): 204-206, 219. Deng Weibin, Wang Guoyin, Wang Yan.Weighted naïve bayes classification algorithm based on Rough Set[J]. Computer Science, 2007, 34(2): 204-206, 219. [22] 郭凤仪, 邓勇, 王智勇, 等. 基于灰度-梯度共生矩阵的串联故障电弧特征[J]. 电工技术学报, 2018, 33(1): 71-81. Guo Fengyi, Deng Yong, Wang Zhiyong, et al.Series arc fault characteristics based on gray level-gradient co-occurrence matrix[J]. Transactions of China Elec- trotechnical Society, 2018, 33(1): 71-81. [23] 陈焕栩, 解浩, 张建文, 等. 基于灰度共生矩阵纹理特征的局部放电模式识别[J]. 电力系统保护与控制, 2018, 46(5): 25-30. Chen Huanxu, Xie Hao, Zhang Jianwen, et al.Partial discharge pattern recognition based on texture feature of gray level co-occurrence matrix[J]. Power System Protection and Control, 2018, 46(5): 25-30.