An Improved Control Method of 4-Wire Vienna Rectifier Considering Power Fluctuation
Yang Di, Yao Gang, Zhou Lidan
Key Laboratory of Control of Power Transmission and Conversion of Ministry of Education Department of Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
In most cases, power fluctuation will result in zero-crossing distortion and current ripples during the operation of three-phase four-wire Vienna rectifier under the traditional dual loop control with PI regulator. This paper discussed the influence of power fluctuation on the input current from the perspective of continuous current mode (CCM) and discontinuous current mode (DCM). Accordingly, a combination of PI controller, repetitive controller and duty-ratio feedforward control, as an improved control strategy, was proposed. On one hand, the intervention method of duty-ratio feedforward compensation can effectively eliminate the zero-crossing distortion in AC current. On the other hand, the repetitive controller gives a fiercer attenuation of AC current harmonics and has a better ability to deal with the grid voltage interruption. System modeling, parameter design and stability verification were also carried out. Finally, simulation and experiment verified the proposed control strategy.
杨頔, 姚钢, 周荔丹. 功率变化环境下的四线制Vienna整流器优化联合控制方法[J]. 电工技术学报, 2021, 36(2): 305-319.
Yang Di, Yao Gang, Zhou Lidan. An Improved Control Method of 4-Wire Vienna Rectifier Considering Power Fluctuation. Transactions of China Electrotechnical Society, 2021, 36(2): 305-319.
[1] Soeiro T B, Kolar J W.Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3589-3601.
[2] 丁文龙, 刘家君, 段彬, 等. VIENNA整流器中点电位振荡抑制与平衡控制研究[J]. 中国电机工程学报, 2017, 37(24): 7284-7293, 7443.
Ding Wenlong, Liu Jiajun, Duan Bin, et al.Investi- gation of neutral-point voltage oscillation suppression and balancing control in VIENNA rectifiers[J]. Proceedings of the CSEE, 2017, 37(24): 7284-7293, 7443.
[3] Lee J S, Lee K B, Blaabjerg F.Predictive control with discrete space-vector modulation of Vienna rectifier for driving PMSG of wind turbine systems[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12368-12383.
[4] 宋卫章, 余丰, 戴智豪, 等. 带负载电流前馈的VIENNA整流器PR控制[J]. 电机与控制学报, 2019, 23(5): 76-83.
Song Weizhang, Yu Feng, Dai Zhihao, et al.Pro- portional resonant current control strategy with load current feed-forward control for VIENNA rectifier[J]. Electric Machines and Control, 2019, 23(5): 76-83.
[5] Adhikari J, Prasanna I V, Panda S K.Reduction of input current harmonic distortions and balancing of output voltages of the Vienna rectifier under supply voltage disturbances[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5802-5812.
[6] 吕征宇, 韩豪杰, 姚文熙, 等. 采用DRC-SPWM的VIENNA整流器在dq坐标系下的数学模型[J]. 电机与控制学报, 2019, 23(2): 11-18.
Lü Zhengyu, Han Haojie, Yao Wenxi, et al.Mathe- matical model of VIENNA rectifier with DRC- SPWM in dq coordinate[J]. Electric Machines and Control, 2019, 23(2): 11-18.
[7] 刘璐, 朱国荣, 陈皓, 等. 三相四线制VIENNA整流器损耗分析与热设计[J]. 电工技术学报, 2014, 29(增刊1): 282-290.
Liu Lu, Zhu Guorong, Chen Hao, et al.Power loss analysis and thermal design of three phase four wire VIENNA rectifier[J]. Transactions of China Electro- technical Society, 2014, 29(S1): 282-290.
[8] 陈杰, 赵冰, 陈新, 等. 不平衡负载条件下三相四线制并联逆变器的下垂控制[J]. 电工技术学报, 2018, 33(20): 4790-4801.
Chen Jie, Zhao Bing, Chen Xin, et al.Droop control of three-phase four-wire parallel inverters under unbalanced load condition[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4790-4801.
[9] 张国荣, 吴一鸣, 彭勃, 等. 三相四线制三电平变流器的优化调制策略[J]. 电力系统自动化, 2018, 42(22): 187-197.
Zhang Guorong, Wu Yiming, Peng Bo, et al.Optimal modulation strategy for three-phase four-wire three- level converter[J]. Automation of Electric Power Systems, 2018, 42(22): 187-197.
[10] 邹甲, 王聪, 程红, 等. 三相线电压级联VIENNA变换器调制及直流侧电压控制[J]. 电工技术学报, 2018, 33(16): 3835-3844.
Zou Jia, Wang Cong, Cheng Hong, et al.Research on modulation strategy and balance control for DC-link voltages in triple line-voltage cascaded VIENNA converter[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3835-3844.
[11] Kolar J W, Friedli T.The essence of three-phase PFC rectifier systems-part I[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 176-198.
[12] Song Weizhang, Xing Feixiong, Yan Hua, et al.A hybrid control method to suppress the three-time fundamental frequency neutral-point voltage fluctu- ation in a VIENNA rectifier[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(2): 468-480.
[13] 朱文杰, 陈昌松, 段善旭. 一种改善Vienna整流器输入电流品质的载波钳位调制方法[J]. 电工技术学报, 2019, 34(8): 1677-1688.
Zhu Wenjie, Chen Changsong, Duan Shanxu.A carrier-based modulation method with clamped area for input current performance of Vienna rectifier[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1677-1688.
[14] 王春阳, 姚钢, 殷志柱, 等. 针对电网电压扰动的Vienna整流器复合控制方法[J]. 电测与仪表, 2017, 54(21): 49-54, 111.
Wang Chunyang, Yao Gang, Yin Zhizhu, et al.Research on new hybrid control method for Vienna rectifier under disturbed power grid voltage[J]. Electrical Measurement and Instrumentation, 2017, 54(21): 49-54, 111.
[15] 严刚, 姚文熙, 李宾, 等. 混合导通模式三相三电平VIENNA整流器控制策略[J]. 电工技术学报, 2012, 27(12): 87-93.
Yan Gang, Yao Wenxi, Li Bin, et al.Control strategy of three-phase three-level VIENNA rectifier operating in mixed conduction mode[J]. Transactions of China Electrotechnical Society, 2012, 27(12): 87-93.
[16] 徐红灿, 滕予非, 王晓茹. 基于重复和准比例谐振复合的直驱风机网侧变流器控制策略[J]. 电力系统保护与控制, 2018, 46(8): 95-102.
Xu Hongcan, Teng Yufei, Wang Xiaoru.A control strategy combining repetitive control and quasi-PR control for PMSG for grid-side converter[J]. Power System Protection and Control, 2018, 46(8): 95-102.
[17] Arvindan A N, Vela S P.Investigation for improved power quality in hysteresis current controlled three- phase four-wire VIENNA rectifier ropologies[C]// 2018 4th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 2018: 485-493.
[18] Leibl M, Kolar J W, Deuringer J.Sinusoidal input current discontinuous conduction mode control of the VIENNA rectifier[J]. IEEE Transactions on Power Electronics, 2017, 32(11): 8800-8812.
[19] 阚加荣, 吴云亚, 谢少军, 等. 宽功率范围内采用电流临界连续状态+恒频控制的光伏微逆变器[J]. 电网技术, 2017, 41(12): 3926-3933.
Kan Jiarong, Wu Yunya, Xie Shaojun, et al.PV micro-inverter with constant frequency and current BCM control strategy within wide power range[J]. Power System Technology, 2017, 41(12): 3926-3933.
[20] Thandapani T, Karpagam R, Paramasivam S.Com- parative study of VIENNA rectifier topologies[J]. International Journal of Power Electronics, 2015, 7(3/4): 147.
[21] Chen Min, Sun Jian.Feedforward current control of boost single-phase PFC converters[J]. IEEE Transa- ctions on Power Electronics, 2006, 21(2): 338-345.
[22] 唐健, 邹旭东, 佘煦, 等. 三相四线制三电平三桥臂有源滤波器中点平衡控制策略[J]. 中国电机工程学报, 2009, 29(24): 40-48.
Tang Jian, Zou Xudong, She Xu, et al.A research on neutral-point potential balancing control strategy for three-phase four-wire tri-level three-leg APFs[J]. Proceedings of the CSEE, 2009, 29(24): 40-48.
[23] Gusseme K D, Sype D M V D, Bossche A P M V D, et al. Digitally controlled boost power-factor- correction converters operating in both continuous and discontinuous conduction mode[J]. IEEE Transa- ctions on Industrial Electronics, 2005, 52(1): 88-97.
[24] 张旗, 蔡逢煌, 黄丽梅, 等. 单相程控电流源PI+重复控制[J]. 电工技术学报, 2019, 34(增刊1): 163-170.
Zhang Qi, Cai Fenghuang, Huang Limei, et al.PI+ repetitive control applied to single-phase program- mable standard power source[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 163-170.
[25] Cho Y, Lai J S.Digital plug-in repetitive controller for single-phase bridgeless PFC converters[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 165-175.
[26] Zhou Keliang, Wang Danwei.Digital repetitive controlled three-phase PWM rectifier[J]. IEEE Transactions on Power Electronics, 2003, 18(1): 309-316.
[27] He Liqun, Zhang Kai, Xiong Jian, et al.A repetitive control scheme for harmonic suppression of circu- lating current in modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 471-481.
[28] Chen F Z, Dragan Maksimović.Digital control for improved efficiency and reduced harmonic distortion over wide load range in Boost PFC rectifiers[J]. IEEE Transactions on Power Electronics, 2010, 25(10): 2683-2692.