Abstract:This paper firstly introduces the structure of traditional repetitive control and the rapid improvement method in dq coordinates is established. Then the adaptability problems of traditional repetitive control with frequency varying, non-integer value of cycle delay points of improved rapid repetitive control, and the difficulty to get proper integer phase compensating order under low sample frequency are analyzed. To solve these problems, fractional thought is introduced and a double fractional-order repetitive control strategy with frequency adaptability is proposed. By remoulding the traditional internal model into a finite number of adjacent integer-order internal models, novel internal model based on fractional-order cycle delay link is obtained. Meanwhile, finite number of adjacent integer-order phase-lead links are used to replace the traditional single fixed integer-order phase-lead link, to achieve the fractional-order phase compensation. In the algorithm, the classical Lagrange interpolation method is adopted to achieve the fractionization of two links. The influence of interpolation points and interpolation length on fitting effect is analyzed. Two case studies are implemented and performance differences between the proposed method and traditional methods are analyzed and compared from the perspective of frequency characteristics. Finally, experiments on the established 16.5kV·A prototype have verified the validity of proposed strategy.
徐群伟, 吴俊, 吕文韬, 马智泉, 李培. 基于双分数阶快速重复控制的有源电力滤波器电流控制策略[J]. 电工技术学报, 2019, 34(zk1): 300-311.
Xu Qunwei, Wu Jun, Lü Wentao, Ma Zhiquan, Li Pei. Current Control Strategy of Active Power Filter Based on Double Fractional-Order Rapid Repetitive Control. Transactions of China Electrotechnical Society, 2019, 34(zk1): 300-311.
[1] Unger J, Hametner C, Jakubek S, et al.A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles[J]. Journal of Power Sources, 2014, 269(3): 883-897. [2] 何志超, 杨耕, 卢兰光, 等. 一种动力电池动态特性建模[J]. 电工技术学报, 2016, 31(11): 194-203. He Zhichao, Yang Geng, Lu Languang,et al.A modeling method for power battery dynamics[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 194-203. [3] Xiong Rui, He Hongwen, Zhu Fushun.Identification of dynamic model parameters for ultra-capacitor used in electric vehicles[J]. Journal of Beijing Institute of Technology (English Edition), 2011, 20(2): 204-210. [4] Seaman A, Dao T S, Mcphee J.A survey of mathematics-based equivalent circuit and electro- chemical battery models for hybrid and electric vehicle simulation[J]. Journal of Power Sources, 2014, 256: 410-423. [5] 陈希坤, 孙东, 陈小虎. 锂离子电池建模及其荷电状态鲁棒估计[J]. 电工技术学报, 2015, 30(15): 141-147. Chen Xikun, Sun Dong, Chen Xiaohu.Modeling and state of charge robust estimation for lithium-ion batteries[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 141-147. [6] Hu Yiran, Yurkovich S.Linear parameter varying battery model identification using subspace methods[J]. Journal of Power Sources, 2011, 196(5): 2913-2923. [7] 朱浩, 刘云峰, 赵策. 锂离子电池参数辨识与SOC估算研究[J]. 湖南大学学报(自然科学版), 2014, 41(3): 37-42. Zhu Hao, Liu Yunfeng, Zhao Ce.Parameter identification and SOC estimation of lithium ion battery[J]. Journal of Hunan University (Natural Sciences), 2014, 41(3): 37-42. [8] 商云龙, 张奇, 崔纳新, 等. 基于AIC准则的锂离子电池变阶RC等效电路模型研究[J]. 电工技术学报, 2015, 30(17): 55-62. Shang Yunlong, Zhang Qi, Cui Naxin, et al.Research on variable-order RC equivalent circuit model for lithium-ion battery based on the AIC criterion[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 55-62. [9] 刘树林, 崔纳新, 李岩, 等. 基于分数阶理论的车用锂离子电池建模及荷电状态估计[J]. 电工技术学报, 2017, 32(4): 189-195. Liu Shulin, Cui Naxin, Li Yan, et al.Modeling and state of charge estimation of lithium-ion battery based on theory of fractional order for electric vehicle[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 189-195. [10] 刘伟龙, 王丽芳, 廖承林, 等. 充电模态下电动汽车动力电池模型辨识[J]. 电工技术学报, 2017, 32(11): 198-207. Liu Weilong, Wang Lifang, Liao Chenglin, et al.Parameters identification method of battery model for electric vehicles under the charging mode[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 198-207. [11] Moldovan N, Picos R, Garcia-Moreno E.Parameter extraction of a solar cell compact model using genetic algorithms[C]//IEEE Spanish Conference on Electron Devices, Santiago de Compostela, Spain, 2009: 379-382. [12] Kennedy J, Eberhart R.Particle swarm optimi- zation[C]//Proceedings of 1995 IEEE International Conference on Neural Networks, Perth, Australia, 2011: 1942-1948. [13] Shi Yuhui, Eberhart R C.A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 1998: 69-73. [14] 吕志锋, 张金生, 王仕成, 等. 基于自适应权重PSO算法的磁屏蔽装置优化设计[J]. 中国惯性技术学报, 2017, 25(6): 799-803. Lü Zhifeng, Zhang Jinsheng, Wang Shicheng, et al.Optimal design of magnetic shielding device based on adaptive weight PSO algorithm[J]. Journal of Chinese Inertial Technology, 2017, 25(6): 799-803. [15] Tsai Hsing-chih, Tyan Yaw-yauan, Wu Yun-wu.Gravitational particle swarm[J]. Applied Mathematics and Computation, 2013, 219(17): 9106-9117. [16] 王力, 赵洁, 刘涤尘, 等. 基于遗传粒子群优化算法的调速器执行机构分段线性模型及参数辨识[J]. 电工技术学报, 2016, 31(12): 204-210. Wang Li, Zhao Jie, Liu Dichen, et al.Governor actuator piecewise linear model and parameter identification based on genetic algorithm-particle swarm optimization[J]. Transactions of China Elec- trotechnical Society, 2016, 31(12): 204-210. [17] 韩璞, 袁世通. 基于大数据和双量子粒子群算法的多变量系统辨识[J]. 中国电机工程学报, 2014, 34(32): 5779-5787. Han Pu, Yuan Shitong.Multivariable system identification based on double quantum particle swarm optimization and big data[J]. Proceedings of the CSEE, 2014, 34(32): 5779-5787. [18] 项宇, 马晓军, 刘春光, 等. 基于改进的粒子群优化扩展卡尔曼滤波算法的锂电池模型参数辨识与荷电状态估计[J]. 兵工学报, 2014, 35(10): 1659-1666. Xiang Yu, Ma Xiaojun, Liu Chunguang, et al.Estimation of model parameters and SOC of lithium batteries based on IPSO-EKF[J]. Acta Armamentarii, 2014, 35(10): 1659-1666. [19] 王振树, 卞绍润, 刘晓宇, 等. 基于混沌与量子粒子群算法相结合的负荷模型参数辨识研究[J]. 电工技术学报, 2014, 29(12): 211-217. Wang Zhenshu, Bian Shaorun, Liu Xiaoyu, et al.Research on load model parameter identification based on the CQDPSO algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 211-217. [20] 程泽, 董梦男, 杨添剀, 等. 基于自适应混沌粒子群算法的光伏电池模型参数辨识[J]. 电工技术学报, 2014, 29(9): 245-252. Cheng Ze, Dong Mengnan, Yang Tiankai, et al.Extraction of solar cell model parameters based on self-adaptive chaos particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 245-252. [21] Gregory L Plett.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2: modeling and identification[J]. Journal of Power Sources, 2004, 134(2): 262-276. [22] Dubarry M, Liaw B Y.Development of a universal modeling tool for rechargeable lithium batteries[J]. Journal of Power Sources, 2007, 174(2): 856-860. [23] Li Jianwei.Performance-driven behavioral battery modeling for large format batteries[D].odeling for large format batteries[D]. Mississippi: Mississippi State University, 2012.