Two-Vector-Based Modulated Model Predictive Control Method for 2-Level Voltage Source Inverters: Theoretical Analysis, Experimental Verification and Extension
Guo Leilei, Li Guohao, Jin Nan, Li Yanyan, Dou Zhifeng
College of Electric and Information Engineering Zhengzhou University of Light Industry Zhengzhou 450002 China
Abstract:In recent years, model predictive control (MPC) has been widely used to control 2-level voltage source inverters due to its adaptability and robustness. However, in conventional MPC system, only one voltage vector is used per control cycle, resulting in larger current harmonics. To suppress the current harmonics, a two-vector-based modulated MPC strategy is proposed. First, two voltage vectors are used simultaneously to track the target vector in each control period, and the operating time of each voltage vector is calculated based on the principle of modulated MPC. Second, the reference voltage is calculated according to the principle of dead-beat control, and based on the position of the reference voltage only three voltage vector combinations are selected and evaluated online per control period to get the optimal voltage vector combination. Finally, the effectiveness of the proposed two-vector-based modulated MPC strategy is verified by detailed theoretical analysis for the first time. Additionally, the study in this paper also shows that the proposed strategy can be utilized to control other types of inverters, such as three-phase four-switch inverter. Meanwhile, the method proposed in this paper can obtain a similar control performance with the conventional two-vector method, with the advantages of less computation, etc. Theoretical analysis and experimental results verify the effectiveness of the proposed method.
郭磊磊, 李国昊, 金楠, 李琰琰, 窦智峰. 两电平电压源逆变器双矢量调制模型预测控制:理论分析、实验验证和推广[J]. 电工技术学报, 2021, 36(1): 39-49.
Guo Leilei, Li Guohao, Jin Nan, Li Yanyan, Dou Zhifeng. Two-Vector-Based Modulated Model Predictive Control Method for 2-Level Voltage Source Inverters: Theoretical Analysis, Experimental Verification and Extension. Transactions of China Electrotechnical Society, 2021, 36(1): 39-49.
[1] Li Yu, Zhang Zhenbing, Li Kejun, et al.Predictive current control for voltage source inverters considering dead-time effect[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(1): 35-42. [2] 万晓凤, 詹子录, 丁小华, 等. 基于虚拟同步发电机的多逆变器并联改进控制策略[J].电机与控制学报, 2020, 24(2): 118-127.Wan Xiaofeng, Zhan Zilu, Ding Xiaohua, et al. Improved control strategy of multi-inverter parallel based on virtual synchronous generator[J]. Electric Machines and Control, 2020, 24(2): 118-127. [3] 谢文浩, 王建赜, 纪延超, 等. 一种LCL型并网逆变器的复合阻抗重塑方法[J].电机与控制学报, 2018, 22(10): 35-42.Xie Wenhao, Wang Jianze, Ji Yanchao, et al. Composite impedance reshaping method for LCL-type grid-tied inverter[J]. Electric Machines and Control, 2018, 22(10): 35-42. [4] 杨超颖, 王金浩, 杨赟磊, 等. 不对称故障条件下并网光伏逆变器峰值电流抑制策略[J]. 电力系统保护与控制, 2018, 46(16): 103-111.Yang Chaoying, Wang Jinhao, Yang Yunlei, et al. Control strategy to suppress peak current for grid-connected photovoltaic inverter under ubbalanced voltage sags[J]. Power System Protection and Control, 2018, 46(16): 103-111. [5] 晁凯云, 苗世洪, 刘子文, 等. 基于虚拟同步机控制的微电网稳定性分析[J]. 电力系统保护与控制, 2019, 47(3): 9-16.Chao Kaiyun, Miao Shihong, Liu Ziwen, et al. Stability analysis of microgrid based on virtual synchronous generator control[J]. Power System Protection and Control, 2019, 47(3): 9-16. [6] Rodriguez J, Pontt J, Silva C A, et al.Predictive current control of a voltage source inverter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 495-503. [7] 张永昌,杨海涛, 魏香龙, 等. 基于快速矢量选择的永磁同步电机模型预测控制[J]. 电工技术学报, 2016, 31(6): 66-73.Zhang Yongchang, Yang Haitao, Wei Xianglong, et al. Model predictive control of permanent magnet synchronous motors based on fast vector selection[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 66-73. [8] Xia Changliang, Liu Tao, Shi Tingna, et al.A simplified finite-control-set model-predictive control for power converters[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2): 991-1002. [9] 姚骏, 刘瑞阔, 尹萧, 等. 永磁同步电机三矢量低开关频率模型预测控制研究[J]. 电工技术学报, 2018, 33(13): 2935-2945.Yao Jun, Liu Ruikuo, Yin Xiao, et al. Research on 3-vector model predictive control with low switching frequency of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 2935-2945. [10] Liu Xing, Wang Dan, Peng Zhouhua.Cascade-free fuzzy finite-control-set model predictive control for nested neutral point-clamped converters with low switching frequency[J]. IEEE Transactions on Control Systems Technology, 2019, 27(5): 2237-2244. [11] 郭磊磊, 金楠, 李琰琰, 等. 电压源逆变器虚拟矢量模型预测共模电压抑制方法[J]. 电工技术学报, 2020, 35(4): 839-849.Guo Leilei, Jin Nan, Li Yanyan, et al. Virtual vector based model predictive common-mode voltage reduction method for voltage source inverters[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 839-849. [12] 陈素华. 有限集预测控制减少三相电压源逆变器共模漏电流方法[J]. 电力系统保护与控制, 2016, 44(22): 136-141.Chen Suhua. Finite set control model predictive control method to reduce common-mode leakage for three-phase voltage source inverter[J]. Power System Protection and Control, 2016, 44(22): 136-141. [13] Song Zhan, Tian Yanjun, Chen Wei, et al.Predictive duty cycle control of three-phase active-front-end rectifiers[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 698-710. [14] 云献睿, 周肖飞, 何凤有, 等. 基于电压误差判断的PMSM双矢量模型预测控制[J]. 电力电子技术, 2019, 53(1): 11-13.Yun Xianrui, Zhou Xiaofei, He Fengyou, et al. PMSM dual vector model predictive control based onvoltage error judgment[J]. Power Electronics, 2019, 53(1): 11-13. [15] Zhang Yongchang, Peng Yubin, Yang Haitao.Performance improvement of two-vectors-based model predictive control of PWM rectifier[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 6016-6030. [16] 徐艳平, 张保程, 周钦. 永磁同步电机双矢量模型预测电流控制[J]. 电工技术学报, 2017, 32(20): 222- 230.Xu Yanping, Zhang Baocheng, Zhou Qin. Two-vector based model predictive current control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 222-230. [17] 兰志勇, 王波, 徐琛, 等. 永磁同步电机新型三矢量模型预测电流控制[J]. 中国电机工程学报, 2018, 38(增刊1): 243-249.Lan Zhiyong, Wang Bo, Xu Chen, et al. A novel three-vector model predictive current control for permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2018, 38(S1): 243-249. [18] 杨兴武, 牛梦娇, 李豪, 等. 基于开关状态函数计算的改进模型预测控制[J]. 电工技术学报, 2018, 33(20): 4834-4844.Yang Xingwu, Niu Mengjiao, Li Hao, et al. Improved model predictive control based on switching state function calculation[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4834-4844. [19] 陈炜, 曾思珂, 张国政, 等. 永磁同步电机改进型三矢量模型预测转矩控制[J]. 电工技术学报, 2018, 33(增刊2): 420-426.Chen Wei, Zeng Sike, Zhang Guozheng, et al. Improved three-vector model predictive torque control of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 420-426. [20] 丁雄, 林国庆. 三相并网逆变器的改进模型预测控制研究[J]. 电气技术, 2020, 21(3): 16-21. Ding Xiong, Lin Guoqing.Research on three-phase grid-connected inverter based on discrete space vector model predictive control[J]. Electrical Engineering, 2020, 21(3): 16-21. [21] 徐艳平, 王极兵, 张保程, 等. 永磁同步电机三矢量模型预测电流控制[J]. 电工技术学报, 2018, 33(5): 980-988.Xu Yanping, Wang Jibing, Zhang Baocheng, et al. Three-vector-based model predictive current control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 980-988. [22] Yeoh S, Yang T, Tarisciotti L, et al.Permanent-magnet machine- based starter-generator system with modulated model predictive control[J]. IEEE Transactions on Transportation Electrification, 2017, 3(4): 878-890. [23] Tarisciotti L, Zanchetta P, Watson A, et al.Modulated model predictive control for a three-phase active rectifier[J]. IEEE Transactions on Industry Applications, 2015, 51(2): 1610-1620. [24] Zeng Zhiyong, Zhu Chong, Jin Xiaoliang, et al.Hybrid space vector modulation strategy for torque ripple minimization in three-phase four-switch inverter-fed PMSM drives[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2122-2134.