Design Automation for Electrical Energy Router-Design Workflow Framework and Genetic Algorithm: a Review
Yuan Liqiang, Lu Zixian, Sun Jianning, Duan Renzhi, Zhao Zhengming
State Key Laboratory of Control and Simulation of Power System and Generation Equipment Department of Electrical Engineering Tsinghua University Beijing 100084 China
Abstract:Electrical energy routers are promising in energy Internet, ubiquitous electric Internet of Things and other scenarios, and have the features of multi-cascade, multi-port, multi-flow, and multi-modal. These features bring many difficulties to traditional manual design. Design automation for power electronics is expected to overcome the challenges such as difficulty in weighing design objectives, wasting costs on marginal design, time-consuming and labor in hardware iterations, and low degree of design automation. With the rapid development of wide bandgap devices, rapid iteration of computer performance, and extension and refinement of converter application scenarios, design automation for power electronics is expected to achieve design integration, refinement and rapidity. The electrical energy router design problem can be abstracted as a multidisciplinary optimization problem with poor mathematical nature and large scale. Regarding such optimization problems, genetic algorithms have better performance than the traditional optimization algorithms. Based on a systematic summary of the current mainstream design workflow and design software architecture, this paper analyzes the applicability of genetic algorithms to solve design automation problems of power electronics, summarizes the potential problems and challenges in design automation for electrical energy routers, and gives corresponding suggestions.
[1] Blaabjerg F, Yang Yongheng, Ma Ke, et al.Power electronics-the key technology for renewable energy system integration[C]//IEEE 2015 International Con- ference on Renewable Energy Research and Applications, Glasgow, 2015: 1618-1626. [2] Carrasco J M, García Franquelo L, Bialasiewicz J T, et al.Power-electronic systems for the grid integr- ation of renewable energy sources: a survey[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1002-1016. [3] 国家电网《泛在电力物联网建设大纲》正式发布[EB/OL]. (2019-03-11). http://www.chinasmartgrid.com.cn/news/20190311/632172.shtml. [4] 关于推进“互联网+”智慧能源发展的指导意见[EB/OL]. (2016-02-29). http://www.nea.gov.cn/2016-02/29/c_135141026.htm. [5] 孙宏斌, 郭庆来, 潘昭光. 能源互联网: 理念、架构与前沿展望[J]. 电力系统自动化, 2015, 39(19): 1-8. Sun Hongbin, Guo Qinglai, Pan Zhaoguang.Energy internet: concept, architecture, and frontier outlook[J]. Automation of Electric Power Systems, 2015, 39(19): 1-8. [6] Sarlioglu B, Morris C T.More electric aircraft: review, challenges, and opportunities for commercial transport aircraft[J]. IEEE Transactions on Transport- ation Electrification, 2015, 1(1): 54-64. [7] Dujic D, Zhao Chuanhong, Mester A, et al.Power electronic traction transformer-low voltage proto- type[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5522-5534. [8] Krein P T.Data center challenges and their power electronics[J]. CPSS Transactions on Power Electronics and Applications, 2017, 2(1): 39-46. [9] Chen Haisheng, Cong Thang Ngoc, Yang Wei, et al.Progress in electrical energy storage system: a critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312. [10] Bragard M, Soltau N, Thomas S, et al.The balance of renewable sources and user demands in grids: power electronics for modular battery energy storage systems[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3049-3056. [11] She Xu, Huang Alex Q, Burgos R.Review of solid- state transformer technologies and their application in power distribution systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(3): 186-198. [12] 赵争鸣, 冯高辉, 袁立强, 等. 电能路由器的发展及其关键技术[J]. 中国电机工程学报, 2017, 37(13): 3823-3834. Zhao Zhengming, Feng Gaohui, Yuan Liqiang, et al.The development and key technologies of electric energy router[J]. Proceedings of the CSEE, 2017, 37(13): 3823-3834. [13] 冯高辉, 赵争鸣, 袁立强. 基于能量平衡的电能路由器综合控制技术[J]. 电工技术学报, 2017, 32(14): 34-44. Feng Gaohui, Zhao Zhengming, Yuan Liqiang.Synthetical control technology of electric energy router based on energy balance relationship[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 34-44. [14] 曹阳, 袁立强, 朱少敏, 等. 面向能源互联网的配网能量路由器关键参数设计[J]. 电网技术, 2015, 39(11): 3094-3101. Cao Yang, Yuan Liqiang, Zhu Shaomin, et al.Parameter design of energy router orienting energy internet[J]. Power System Technology, 2015, 39(11): 3094-3101. [15] 赵争鸣, 施博辰, 朱义诚. 对电力电子学的再认识——历史, 现状及发展[J]. 电工技术学报, 2017, 32(12): 5-15. Zhao Zhengming, Shi Bochen, Zhu Yicheng.Recon- sideration on power electronics: the past, present and future[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 5-15. [16] 赵争鸣, 袁立强, 鲁挺. 电力电子系统电磁瞬态过程[M]. 北京: 清华大学出版社, 2017. [17] Martins J R R A, Lambe A B. Multidisciplinary design optimization: a survey of architectures[J]. AIAA Journal, 2013, 51(9): 2049-2075. [18] Wu C J, Lee F C, Balachandran S, et al.Design optimization for a half-bridge DC-DC converter[C]// 1980 IEEE Power Electronics Specialists Conference, Atlanta, 1980: 57-67. [19] Balachandran S, Lee F C.Algorithms for power converter design optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981(3): 422-432. [20] De León-Aldaco S E, Calleja H, Alquicira J A. Metaheuristic optimization methods applied to power converters: a review[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 6791-6803. [21] Reinelt G.TSPLIB-a traveling salesman problem library[J]. ORSA Journal on Computing, 1991, 3(4): 376-384. [22] Tomoiagă B, Chindriş M, Sumper A, et al.Pareto optimal reconfiguration of power distribution systems using a genetic algorithm based on NSGA-II[J]. Energies, 2013, 6(3): 1439-1455. [23] Li Qian, Burgos R, Boroyevich D.Hierarchical weight optimization design of aircraft power electronics systems using metaheuristic optimization methods[C]//2018 AIAA/IEEE Electric Aircraft Tech- nologies Symposium (EATS), New Orleans, 2018: 1-10. [24] Biela J, Kolar J W, Stupar A, et al.Towards virtual prototyping and comprehensive multi-objective optimisation in power electronics[C]//Proceedings of the International Power Conversion and Intelligent Motion Conference, Nuremberg, 2010: 515-538. [25] Kolar J W.Multi-objective optimization in power elec- tronics[Z]. Sun-Yat-Sen-National University (NSYSU), ETH Zurich, 2017. [26] Waffler S, Preindl M, Kolar J W.Multi-objective optimization and comparative evaluation of Si soft- switched and SiC hard-switched automotive DC-DC converters[C]//2009 35th Annual Conference of IEEE Industrial Electronics, Porto, 2009: 3814-3821. [27] Lee F C, Van Wyk J D, Boroyevich D, et al. An integrated approach to power electronics systems[C]// IEEE Proceedings of the Power Conversion Con- ference, Osaka, 2002, 1: 7-12. [28] Ghizoni D, Burgos R, Francis G, et al.Design and evaluation of a 33kW PEBB module for distributed power electronics conversion systems[C]//2005 IEEE 36th Power Electronics Specialists Conference, Piscataway, 2005: 530-536. [29] Celanovic I, Celanovic N, Milosavljevic I, et al.A new control architecture for future distributed power electronics systems[C]//2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Pro- ceedings, Vancouver, 2000, 1: 113-118. [30] Viscarret U, Etxeberria-Otadui I, Azurmendi J M, et al.Design of power electronic building blocks (PEBB) for multiMW modular traction converters[C]//2010 IEEE Energy Conversion Congress and Exposition, Atlanta, 2010: 4217-4222. [31] Tardy A, Roboam X, Zanchetta P, et al.Towards more optimization for aircraft energy conversion systems[C]//More Electric Aircraft (MEA 2015), Toulouse, 2015, 1-17. [32] Kolar, Biela, Minibock. Exploring the Pareto front of multi-objective single-phase PFC rectifier design optimization-99.2% efficiency vs. 7kW/dm3 power density[C]//IEEE International Power Electronics & Motion Control Conference, Wuhan, 2009: 9-29. [33] Burkart R M.Advanced modeling and multi- objective optimization of power electronic converter systems[D]. ETH Zurich, 2016. [34] Chen Zhou.Integrated electrical and thermal modeling, analysis and design for IPEM[D]. Virginia Tech, 2004. [35] Wu Yingxiang.Describing integrated power electronics modules using STEP AP210[D]. Virginia Tech, 2004. [36] Evans P L, Castellazzi A, Johnson C M.Design tools for rapid multidomain virtual prototyping of power electronic systems[J]. IEEE Transactions on Power Electronics, 2015, 31(3): 2443-2455. [37] Li Ke, Evans P, Johnson M.Developing power semiconductor device model for virtual prototyping of power electronics systems[C]//2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, 2016: 1-6. [38] Chinesta F, Ladeveze P, Cueto E.A short review on model order reduction based on proper generalized decomposition[J]. Archives of Computational Methods in Engineering, 2011, 18(4): 395-404. [39] Fiacco A V, McCormick G P. The sequential unconstrained minimization technique for nonlinear programing, a primal-dual method[J]. Management Science, 1964, 10(2): 360-366. [40] Powell M J D. A method for nonlinear constraints in minimization problems[J]. Optimization, 1969: 283-298. [41] Hestenes M R.Multiplier and gradient methods[J]. Journal of Optimization Theory and Applications, 1969, 4(5): 303-320. [42] Bianchi L, Dorigo M, Gambardella L M, et al.A survey on metaheuristics for stochastic combinatorial optimization[J]. Natural Computing, 2009, 8(2): 239-287. [43] Blum C, Roli A.Metaheuristics in combinatorial optimization: overview and conceptual comparison[J]. ACM Computing Surveys (CSUR), 2003, 35(3): 268-308. [44] Holland J H.Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge, MIT Press, 1992. [45] Vent W.Rechenberg, ingo, evolutionsstrategie— optimierung technischer systeme nach prinzipien der biologischen evolution. 170 S. mit 36 Abb. frommann- holzboog-verlag. stuttgart 1973. broschiert[J]. Feddes Repertorium, 1975, 86(5): 337. [46] Shwefel H P.Numerische optimierung von computer- modellen[D]. PhD Thesis, Decision Support Methods for Global Optimization, 1974. [47] Fogel L J, Owens A J, Walsh M J.Application of evolutionary programming[C]//Record of the IEEE Systems Science and Cybernetics Conference, Washington D C, 1966: 945-956. [48] Koza J R, Koza J R.Genetic programming: on the programming of computers by means of natural selection[M]. MIT Press, 1992. [49] Storn R, Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. [50] Back T.Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms[M]. Oxford: Oxford University Press, 1996. [51] Fogel D B.Introduction to evolutionary com- putation[M]. Evolutionary Computation, 2000. [52] Spears W M.Evolutionary algorithms: the role of mutation and recombination[M]. Springer Science & Business Media, 2013. [53] Michalewicz Z, Fogel D B.How to solve it: modern heuristics[M]. Springer Science & Business Media, 2013. [54] Calégari P, Coray G, Hertz A, et al.A taxonomy of evolutionary algorithms in combinatorial optimi- zation[J]. Journal of Heuristics, 1999, 5(2): 145-158. [55] Deb K, Pratap A, Agarwal S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [56] Zhang Qingfu, Li Hui.MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. [57] Zitzler E, Laumanns M, Thiele L.SPEA2: improving the strength Pareto evolutionary algorithm[Z]. TIK- report 103, 2001. [58] Coello C A C, Lechuga M S. MOPSO: a proposal for multiple objective particle swarm optimization[C]// IEEE Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, 2002, 2: 1051-1056. [59] Corne D W, Jerram N R, Knowles J D, et al.PESA-II: region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, San Francisco, 2001: 283-290. [60] Deb K.Multi-objective optimization using evolutionary algorithms[M]. John Wiley & Sons, 2001. [61] Deb K, Jain H.An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601. [62] Jain H, Deb K.An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 602-622. [63] Cheng Ran, Jin Yaochu, Olhofer M, et al.A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. [64] Zhang Jun, Chung H S H, Lo W L. Pseudocoevolutionary genetic algorithms for power electronic circuits optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2006, 36(4): 590-598. [65] Versele C, Deblecker O, Lobry J.A computer-aided design tool dedicated to isolated DC-DC converters based on multiobjective optimization using genetic algorithms[J]. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2012, 31(2): 583-603. [66] Mirjafari M, Balog R S.Multi-objective design optimization of renewable energy system inverters using a descriptive language for the components[C]// 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, 2011: 1838-1845. [67] Escobar G, Stankovic A M, Carrasco J M, et al.Analysis and design of direct power control (DPC) for a three phase synchronous rectifier via output regulation subspaces[J]. IEEE Transactions on Power Electronics, 2003, 18(3): 823-830. [68] Schumacher D, Bilgin B, Emadi A.Inductor design for multiphase bidirectional DC-DC boost converter for an EV/HEV application[C]//2017 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, 2017: 221-228. [69] Versèle C, Deblecker O, Lobry J.Multiobjective optimal design of transformers for isolated switch mode power supplies[C]//IEEE SPEEDAM, Pisa, 2010: 1687-1692. [70] Mühlethaler J.Modeling and multi-objective optimization of inductive power components[D]. ETH Zurich, 2012. [71] Ning Puqi, Wang Fei, Ngo K D T. Automatic layout design for power module[J]. IEEE Transactions on Power Electronics, 2011, 28(1): 481-487. [72] Burkart R M, Kolar J W.Comparative η -ρ -σ Pareto optimization of Si and SiC multilevel dual-activebridge topologies with wide input voltage range[J]. IEEE Transactions on Power Electronics, 2016, 32(7): 5258-5270. [73] Tran D, Chakraborty S, Lan Yuanfeng, et al.Optimized multiport DC/DC converter for vehicle drivetrains: topology and design optimization[J]. Applied Sciences, 2018, 8(8): 1351-1368. [74] Busquets-Monge S, Crebier J C, Ragon S, et al.Design of a boost power factor correction converter using optimization techniques[J]. IEEE Transactions on Power Electronics, 2004, 19(6): 1388-1396. [75] Lefranc P, Jannot X, Dessante P.Virtual prototyping and pre-sizing methodology for Buck DC-DC converters using genetic algorithms[J]. IET Power Electronics, 2012, 5(1): 41-52. [76] Rosskopf A, Volmering S, Ditze S, et al.Autonomous circuit design of a resonant converter (LLC) for on-board chargers using genetic algorithms[C]//2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, 2018: 96-101. [77] Neugebauer T C, Perreault D J.Computer-aided optimization of DC/DC converters for automotive applications[J]. IEEE Transactions on Power Electronics, 2003, 18(3): 775-783. [78] 施博辰, 赵争鸣, 蒋烨, 等. 功率开关器件多时间尺度瞬态模型(Ⅰ)——开关特性与瞬态建模[J]. 电工技术学报, 2017, 32(12): 16-24. Shi Bochen, Zhao Zhengming, Jiang Ye, et al.Multi-time scale transient models for power semiconductor devices (part I: switching characteristics and transient modeling)[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 16-24. [79] Jain H, Deb K.An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization[C]//International Conference on Evolutionary Multi-Criterion Optimization, Springer, Berlin, Heidelberg, 2013: 307-321. [80] Schanen J L. Design of power electronics converter: beyond topology[R/OL]. (2017-03-16)[2019-07-09]. http://seeds.cnrs.fr/IMG/pdf/b04-jls_optimisation_des_ convertisseurs.pdf. [81] Gupta R K, Castelino G F, Mohapatra K K, et al.A novel integrated three-phase, switched multi-winding power electronic transformer converter for wind power generation system[C]//IECON'09. 35th Annual Conference of IEEE Industrial Electronics, Porto, 2009: 4481-4486. [82] Tripathi A K, Hatua K, Mirzaee H, et al.A threephase three winding topology for dual active bridge and its DQ mode control[C]//2012 Applied Power Electronics Conference and Exposition (APEC), 2012: 1368-1372. [83] Wang Gangyao, Baek S, Elliott J, et al.Design and hardware implementation of Gen-1 silicon based solid state transformer[C]//2011 Applied Power Electronics Conference and Exposition (APEC), Fort Worth, 2011: 1344-1349. [84] Li Kai, Zhao Zhengming, Yuan Liqiang, et al.Synergetic control of high-frequency-link based multi-port solid state transformer[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, 2018: 5630-5635. [85] Shi Jianjiang, Gou Wei, Yuan Hao, et al.Research on voltage and power balance control for cascaded modular solid-state transformer[J]. IEEE Transactions on Power Electronics, 2011, 26(4): 1154-1166. [86] Huber J E, Rothmund D, Kolar J W.Comparative evaluation of isolated front end and isolated back end multi-cell SSTs[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 2016: 35363545. [87] Nabae A, Takahashi I, Akagi H. A new neutralpoint-clamped PWM inverter[J]. IEEE Transactions on Industry Applications, 1981, IA-17(5): 518-523. [88] She Xu, Yu Xunwei, Wang Fei, et al.Design and demonstration of a 3.6kV-120V/10kVA solid-state transformer for smart grid application[J]. IEEE Transactions on Power Electronics, 2013, 29(8): 3982-3996. [89] Falcones S, Mao Xiaolin, Ayyanar R.Topology comparison for solid state transformer implementation[C]// 2010 IEEE Power and Energy Society General Meeting, Calgary, 2010: 1-8. [90] Wang Fei, Shen Wei, Boroyevich D, et al.Design optimization of industrial motor drive power stage using genetic algorithms[C]//Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 2006, 5: 2581-2586. [91] Huang Tao, Huang Jian, Zhang Jun.An orthogonal local search genetic algorithm for the design and optimization of power electronic circuits[C]//2008 IEEE Congress on Evolutionary Computation, Hong Kong, 2008: 2452-2459. [92] Zhang Jun, Chung H S H, Lo A W L, et al. Extended ant colony optimization algorithm for power electronic circuit design[J]. IEEE Transactions on Power Electronics, 2008, 24(1): 147-162. [93] Zhang Jun, Shi Yuan, Zhan Zhihui.Power electronic circuits design: a particle swarm optimization approach[C]//Asia-Pacific Conference on Simulated Evolution and Learning, Springer, Berlin, Heidelberg, 2008: 605614. [94] Zhan Zhihui, Zhang Jun.Orthogonal learning particle swarm optimization for power electronic circuit optimization with free search range[C]//2011 IEEE Congress of Evolutionary Computation (CEC), New Orleans, 2011: 2563-2570. [95] 蒋烨, 赵争鸣, 施博辰, 等. 功率开关器件多时间尺度瞬态模型(Ⅱ)——应用分析与模型互联[J]. 电工技术学报, 2017, 32(12): 25-32. Jiang Ye, Zhao Zhengming, Shi Bochen, et al.Multi-time scale transient models for power semiconductor devices (part II: applications analysis and model connection)[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 25-32. [96] 朱义诚, 赵争鸣, 王旭东, 等. SiC MOSFET与SiC SBD换流单元瞬态模型[J]. 电工技术学报, 2017, 32(12): 58-69. Zhu Yicheng, Zhao Zhengming, Wang Xudong, et al.Analytical transient model of commutation units with SiC MOSFET and SiC SBD pair[J]. Transactions of China Electrotechnical Society 2017, 32(12): 58-69. [97] Wang Xudong, Zhao Zhengming, Li Kai, et al.Analytical methodology for loss calculation of SiC MOSFETs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 7(1): 71-83. [98] Shi Bingqing, Zhao Zhengming, Zhu Yicheng. Piecewise analytical transient model for power switching device commutation unit[J]. IEEE Transactions on Power Electronics, 2018, 34(6): 5720 5736. [99] Li Boyang, Zhao Zhengming, Yang Yi, et al.A novel simulation method for power electronics: discrete state event driven method[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 273282. [100] 杨祎, 赵争鸣, 檀添, 等. 离散状态事件驱动仿真方法及自适应预估校正算法[J]. 电工技术学报, 2017, 32(12): 33-41. Yang Yi, Zhao Zhengming, Tan Tian, et al.Discrete state event driven method and self-adapted predictorcorrector algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 33-41. [101] 李帛洋, 赵争鸣, 檀添, 等. 后向离散状态事件驱动电力电子仿真方法[J]. 电工技术学报, 2017, 32(12): 42-49. Li Boyang, Zhao Zhengming, Tan Tian, et al.A backword discrete state event driven simulation method for power electronics based on finite state machine[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 42-49. [102] 施博辰, 赵争鸣, 朱义诚, 等. 离散状态事件驱动仿真方法在高压大容量电力电子变换系统中的应用[J]. 高电压技术, 2019, 45(7): 2053-2061. Shi Bochen, Zhao Zhengming, Zhu Yicheng, et al.Application of discrete state event-driven simulation framework in high-voltage power electronic hybrid systems[J]. High Voltage Technology, 2019, 45(7): 2053-2061. [103] 易姝娴, 袁立强, 李凯, 等. 面向区域电能路由器的高效仿真建模方法[J]. 清华大学学报: 自然科学版, 2019, 59(10): 796-806. Yi Shuxian, Yuan Liqiang, Li Kai, et al.High efficiency modeling method for regional energy routers[J]. Journal of Tsinghua University: Science and Technology, 2019, 59(10): 796-806. [104] Guillod T, Kolar J W. Handling design space diversity of power electronics multi-objective optimization[R/OL]. IEEE Design Automation for Power Electronics Workshop (DAPE), Genoa, Italy, September 6, 2019. [2019-12-11]. https://www.pes-publications. ee.ethz.ch/uploads/tx_ethpublications/workshop_publications/8_DAPE_guillod_2019.pdf.