The Computation of Diffusion Characteristics of Decomposition Gases in SF6 and SF6/N2 within Gas Insulated Transmission Lines
Liu Ming1, Zou Jianming1, Qiu Rui2, Li Zhenzhu1, Zhou Wenjun2
1. Central China Branch of State Grid Corporation of China Wuhan 430077 China; 2. School of Electrical and Automation Wuhan University Wuhan 430072 China
Abstract:In order to obtain the impact of diffusion process on chemical detections for gas insulated transmission lines (GIL), the diffusion model of decomposition gases in SF6 and SF6/N2 was done based on Fick's law and Fuller-Schettler-Giddings (FSG) equation. The prediction method of molecular diffusion volume Vd was built by density functional theory (DFT) and van der Waals surface analysis. The diffusion processes under different temperature T, pressure p and mixed ratio of SF6 ${{\varphi }_{\text{S}{{\text{F}}_{\text{6}}}}}$ were calculated by finite element method (FEM). The prediction models for concentrations cG of 8 main decomposition gases at different time and position were built by multivariate nonlinear regressions. The results shew that the diffusion of decomposition gases were mainly related to their diffusion coefficient DG. The influences of T, p and ${{\varphi }_{\text{S}{{\text{F}}_{\text{6}}}}}$ were mainly reflected on DG. The effect of T was smaller than that of p and ${{\varphi }_{\text{S}{{\text{F}}_{\text{6}}}}}$. The cG decayed exponentially with distance and increased exponentially with time. Diffusions could cause difference in cG between sites of detection and defection. That would affect the accuracy of chemical detection methods. In addition, the diffusion may change the weights of decomposition gases in insulation diagnoses.
刘溟, 邹建明, 邱睿, 李振柱, 周文俊. SF6及SF6/N2中分解气体在气体绝缘传输管道内的扩散特性计算[J]. 电工技术学报, 2020, 35(11): 2478-2490.
Liu Ming, Zou Jianming, Qiu Rui, Li Zhenzhu, Zhou Wenjun. The Computation of Diffusion Characteristics of Decomposition Gases in SF6 and SF6/N2 within Gas Insulated Transmission Lines. Transactions of China Electrotechnical Society, 2020, 35(11): 2478-2490.
[1] 李鑫涛, 林莘, 徐建源, 等. SF6/N2混合气体电击穿特性仿真及实验[J]. 电工技术学报, 2017(20): 48-58. Li Xintao, Lin Xin, Xu Jianyuan, et al.Simulations and experiments of dielectric breakdown characteristics in SF6/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 48-58. [2] 赵明月, 林涛, 颜湘莲, 等. 基于氧同位素示踪法的电晕放电中H2O和O2对SF6分解气体形成的影响[J]. 电工技术学报, 2018, 33(20): 4722-4728. Zhao Mingyue, Lin Tao, Yan Xianglian, et al.Influence of trace H2O and O2 on SF6 decomposition characteristics under corona discharge based on oxygen isotope tracer[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4722-4728. [3] 刘栋财. GIL故障气体在线监测技术研究与系统开发[D]. 成都: 西南交通大学, 2017. [4] Suzuki T.The determination of the diffusion rate of SF6 into nitrogen[J]. IEEE Transactions on Electrical Insulation, 1982, 17(1): 34-38. [5] Taylor W L, Hurly J J.Thermal diffusion factors and intermolecular potentials for noble gas-SF6 systems[J]. The Journal of Chemical Physics, 1993, 98(3): 2291-2297. [6] Talib Z A, Saporoschenko M.Transport coefficients of SF3+ and SF5+ ions in SF6 gas[J]. Journal of Physics D: Applied Physics, 1994, 27(11): 2307-2311. [7] Urquijo-Carmona J D, Cisneros C, Martinez H, et al. Transport coefficients of SF+ and SF2+ in SF6[J]. Journal of Physics D: Applied Physics, 1992, 25(8): 1277-1279. [8] 周舟, 万涛, 龚尚昆, 等. 基于CFD技术的六氟化硫电气设备中气体湿度测量方法研究[J]. 电工技术学报, 2014, 29(增刊1): 29-35. Zhou Zhou, Wan Tao, Gong Shangkun, et al.Investigation on measurement method of gas humidity in sulfur hexafluoride electric equipment based on CFD technique[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 29-35. [9] 张驰, 蔡萱, 张莹, 等. 基于流体计算力学模拟技术研究氦示踪气体分子在六氟化硫绝缘气体中的扩散情况[J]. 湖北电力, 2018, 44(1): 35-42. Zhang Chi, Cai Xuan, Zhang Ying, et al.Study on the diffusion of helium tracer gas molecules in sulfur hexafluoride insulating gas based on fluid computational mechanics simulation technology[J]. Hubei Electric Power, 2018, 44(1): 35-42. [10] Zhang Jinliang, Yan Jiudun, Murphy A B, et al.Computational investigation of arc behavior in an auto-expansion circuit breaker contaminated by ablated nozzle vapor[J]. IEEE Transactions on Plasma Science, 2002, 30(2): 706-719. [11] Zhong Linlin, Wang Xiaohua, Rong Mingzhe, et al.Calculation of combined diffusion coefficients in SF6-Cu mixtures[J]. Physics of Plasmas, 2014, 21(10): 103506. [12] Murphy A B.Diffusion in equilibrium mixtures of ionized gases[J]. Physical Review E, 1993, 48(5): 3594-3603. [13] 乔胜亚, 周文俊, 唐念, 等. 不同吸附剂对GIS局部放电特征气体变化规律的影响[J]. 电工技术学报, 2016, 31(3): 113-120. Qiao Shengya, Zhou Wenjun, Tang Nian, et al.Effects of different adsorbents on gas variation characteristics of partial discharge in GIS[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 113-120. [14] 周永言, 乔胜亚, 李丽, 等. GIS中S2OF10作为局部放电特征气体的有效性分析[J]. 中国电机工程学报, 2016, 36(3): 871-878. Zhou Yongyan, Qiao Shengya, Li Li, et al.Validity analysis of S2OF10 as a target gas of partial discharge in GIS[J]. Journal of Chinese Electrical Engineering Science, 2016, 36(3): 871-878. [15] Greenkorn R.Momentum, heat, and mass transfer fundamentals[M]. New York: McGraw-Hill, 1999. [16] Atta K R, Gavril D, Karaiskakis G.New methodology for the measurement of diffusion coefficients of pure gases into gas mixtures[J]. Instrumentation Science & Technology, 2002, 30(1): 67-78. [17] 诸林, 刘瑾, 王兵, 等. 化工原理[M]. 北京: 石油工业出版社, 2007. [18] 陈庆国, 邱睿, 林林,等. 基于密度泛函理论的SF6潜在替代气体筛选[J]. 高电压技术, 2019, 45(4): 1026-1039. Chen Qingguo, Qiu Rui, Lin Lin, et al.Screening of SF6 potential alternative gas based on density functional theory[J]. High Voltage Technology, 2019, 45(4): 1026-1039. [19] Stephens P J D, Devlin F J C, Chabalowski C F N, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. Journal of Physical Chemistry, 1994, 98(45): 11623-11627. [20] Krishnan R, Binkley J S, Seeger R, et al.Self-consistent molecular-orbital methods. XX. A basis set for correlated wave-functions[J]. Journal of Chemical Physics, 1980, 72(1): 650-654. [21] Lu Tian, Chen Feiwu.Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. [22] Lu Tian, Chen Feiwu.Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm[J]. Journal of Molecular Graphics & Modelling, 2012, 38(9): 314-323. [23] 唐念, 乔胜亚, 李丽, 等. HF和H2S作为气体绝缘组合电器绝缘缺陷诊断特征气体的有效性[J].电工技术学报, 2017, 32(19): 206-215. Tang Nian, Qiao Shengya, Li Li, et al.Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 206-215. [24] Christophorou L G, Olthoff J K, Green D S.Gases for electrical insulation and arc interruption: possible present and future alternatives to pure SF6[R]. NIST Technical Note, 1997, 8(3): 12-15. [25] 周安春, 高理迎, 冀肖彤, 等. SF6/N2混合气体用于GIS母线的研究与应用[J]. 电网技术, 2018, 42(10): 3429-3435. Zhou Anchun, Gao Liying, Yi Xiaotong, et al.Research and application of SF6/N2 mixed gas used in GIS bus[J]. Power System Technology, 2018, 42(10): 3429-3435. [26] 李冰, 肖登明, 赵谡, 等. 第二代气体绝缘输电线路的温升数值计算[J]. 电工技术学报, 2017, 32(13): 271-276. Li Bing, Xiao Dengming, Zhao Su, et al.Temperature rise numerical calculation of the second generation gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 271-276. [27] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006. [28] 金启胜. 利用Fourier变换求解热传导方程的定解问题[J]. 上饶师范学院学报, 2011, 31(3): 54-55. Jin Qisheng.Using Fourier transform to solve fixed solution problems of heat conduction equations[J]. Journal of Shangrao Normal University, 2011, 31(3): 54-55.