Solution of Inverse Problem of the Standing Wave of "100Hz" Pure Tone Generated by AC Transmission Line
Wei Lijing1,3, Zhang Yemao1,2, Zhou Wenjun3, Li Pengfei4, Lu Yao1,2
1. China Electric Power Research Institute Wuhan 430074 China; 2. State Key Laboratory of Power Grid Environmental Protection Wuhan 430074 China; 3. School of Electric Engineering Wuhan University Wuhan 430072 China; 4. School of Electrical and Mechanical Engineering Pingdingshan University Pingdingshan 467000 China
Abstract:The audible noise generated by the AC transmission line includes broadband noise and "100Hz" pure acoustic noise. Because of the reflection of the earth, the standing wave of the pure tone is generated. In order to evaluate the pure acoustic noise source, in this paper, a power traceability method of "100Hz" pure tone based on particle swarm optimization is proposed. Firstly, the "100Hz" pure sound standing wave generated by the double-loop transmission line of the same tower is modeled and calculated. On this basis, a method is proposed to invert the sound power generated by the phase conductors of the transmission line from the sound pressure value near the ground. That is, on the cross section of the line, the points of several points are selected at a certain height, and the complex coefficient equations are obtained according to the propagation characteristics. The numerical solution of the equations was obtained by the improved particle swarm algorithm. The pseudo-solution could be eliminated effectively by increasing the number of equations. The results show that the "100Hz" pure sound power can be accurately reversed by the above method. In the case of this example, the absolute error is less than 2.66×10-7dB.
卫李静, 张业茂, 周文俊, 李鹏飞, 路遥. 输电线路产生的“100Hz”纯声驻波逆问题求解[J]. 电工技术学报, 2019, 34(23): 5023-5029.
Wei Lijing, Zhang Yemao, Zhou Wenjun, Li Pengfei, Lu Yao. Solution of Inverse Problem of the Standing Wave of "100Hz" Pure Tone Generated by AC Transmission Line. Transactions of China Electrotechnical Society, 2019, 34(23): 5023-5029.
[1] 张广洲, 程更生, 万保权, 等. 交流特高压试验线段电磁环境研究[J]. 高电压技术, 2008, 34(3): 438-441. Zhang Guangzhou, Cheng Gengsheng, Wan Baoquan, et al.Study on electromagnetic environment of AC UHV test segment[J]. High Voltage Engineering, 2008, 34(3): 438-441. [2] 路遥, 干喆渊, 陈豫朝, 等. 特高压试验线段与实际线路产生的电场和可听噪声的等效性分析[J]. 高电压技术, 2011, 37(2): 354-360. Lu Yao, Gan Zheyuan, Chen Yuchao, et al.Consistency analysis between the electric field and audible noise caused by UHV test line and UHV transmission line[J]. High Voltage Engineering, 2011, 37(2): 354-360. [3] 孙涛, 万保权, 陈豫朝, 等. 积灰对输电线路导线电晕特性影响的电晕笼试验分析[J]. 高电压技术, 2010, 36(12): 2913-2917. Sun Tao, Wan Baoquan, Chen Yuchao, et al.Experimental analysis of corona cage on the influence of corona characteristics of transmission lines by ash deposition[J]. High Voltage Engineering, 2010, 36(12): 2913-2917. [4] 唐剑, 杨迎建, 李永双, 等. 特高压交流输电线路电晕效应的预测方法,Ⅰ:可听噪声[J]. 高电压技术, 2010, 36(11): 2679-2686. Tang Jian, Yang Yingjian, Li Yongshuang, et al.Prediction method of corona effect in UHV AC transmission line, Ⅰ: audible noise[J]. High Voltage Engineering, 2010, 36(11): 2679-2686. [5] 唐剑, 何金良, 刘云鹏, 等. 海拔对导线交流电晕可听噪声影响的电晕笼试验结果与分析[J]. 中国电机工程学报, 2010, 30(4): 105-111. Tang Jian, He Jinliang, Liu Yunpeng, et al.Results and analysis of corona cage test on the influence of altitude to the audible noise of conductor alternating corona[J]. Proceedings of the CSEE, 2010, 30(4): 105-111. [6] 陈豫朝, 谢辉春, 张业茂, 等. 基于电晕笼的特高压交流输电线路可听噪声预测方法[J]. 高电压技术, 2012, 38(9): 2189-2194. Chen Yuchao, Xie Huichun, Zhang Yemao, et al.Prediction method for audible noise of UHV AC transmission line based on corona cage[J]. High Voltage Engineering, 2012, 38(9): 2189-2194. [7] 张业茂, 李睿, 周兵, 等. 特高压交流同塔双回输电线路可听噪声长期测试数据分析[J]. 高电压技术, 2017, 43(7): 2301-2308. Zhang Yemao, Li Rui, Zhou Bing, et al.Analysis of long-term test data of audible noise of UHV AC double circuit transmission line[J]. High Voltage Engineering, 2017, 43(7): 2301-2308. [8] 谢辉春, 崔翔, 刘华钢, 等. 特高压同塔双回交流输电线路采用(8+2)分裂导线与常规导线电晕特性对比[J]. 高电压技术, 2016, 42(3): 966-972. XieHuichun, Cui Xiang, Liu Huagang, et al. Wire corona characteristics comparison of UHV double circuit AC transmission line applying (8+2) split conductor and conventional conductor[J]. High Voltage Engineering, 2016, 42(3): 966-972. [9] 谢辉春, 崔翔, 路遥, 等. 特高压同塔双回交流输电线路绝缘子串长优化后的线路可听噪声试验[J]. 高电压技术, 2016, 42(5): 1659-1666. Xie Huichun, Cui Xiang, Lu Yao, et al.Test of the audible noise after the optimization of the insulator string’s length of the UHV double circuit transmission line[J]. High Voltage Engineering, 2016, 42(5): 1659-1666. [10] Chartier V L, Stearns R D.Formulas for predicting audible noise from overhead high voltage AC and DC lines[J]. IEEE Transactions on Power Apparatus & Systems, 1981, 100(1): 121-130. [11] Combes M G, Carberry R E, Chartier V L, et al.A comparison of methods for calculating audible noise of high voltage transmission lines[J]. IEEE Transactions on Power Apparatus & Systems, 1982, 101(10): 4090-4099. [12] Transmission and distribution committee. IEEE 656-2018. IEEE standard for the measurement of audible noise from overhead transmission lines[S]. 2018. [13] Tanabe K.Second harmonics of audible noise from AC transmission lines-random walk model on space distribution[J]. IEEE Power Engineering Review, 1991, 1(1): 216-220. [14] Tanabe K.Hum noise performance of 6, 8, 10 conductor bundles for 1000 kV transmission lines at the Akagi test site: a comparative study with cage data[J]. IEEE Transactions on Power Delivery, 1991, 6(4): 1799-1804. [15] Electric Power Research Institute. EPRI AC transmission line reference book-200 kV and above[M]. 3 rd ed. Palo Alto, CA, USA: EPRI, 2005: 10-45. [16] 路遥, 张业茂, 刘震寰, 等. 特高压同塔双回线路产生的“100Hz”纯声驻波研究[J]. 高电压技术, 2018, 44(7): 2261-2267. Lu Yao, Zhang Yemao, Liu Zhenhuan, et al.Study on standing wave of “100Hz”pure tone from UHV AC double-circuit transmission lines on the same tower[J]. High Voltage Engineering, 2018, 44(7): 2261-2267. [17] 彭道刚, 陈跃伟, 钱玉良, 等. 基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J]. 电工技术学报, 2018, 33(8):1742-1749. Peng Daogang, Chen Yuewei, Qian Yuliang, et al.Transformer winding temperature soft measurement model based on particle swarm optimization-support vector regression[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1742-1749.