Abstract:Due to the limitations of sampling and measurement techniques, there is a lack of in-depth study on the migration and aggregation behavior of water at the interface between mineral oil and cellulose. In this paper, the migration and aggregation of water molecules at the interface between mineral oil and cellulose during heating process were studied from the molecular level. A model of a 105 atomic-scale mineral oil and cellulose composite media was established. The heating process from 293K to 353K was simulated. The aggregation state, diffusion coefficient, free volume, and radial distribution function of water molecules were calculated and analyzed, and the effects of electric and temperature fields in this process were compared. The results show that when the moisture in cellulose exceeds 4%, rapid temperature rise will cause water molecules to accumulate into clusters of water molecules through intermolecular hydrogen bonding at the oil-paper interface to form local liquid water. When the moisture content exceeds 5%, a large liquid water zone will be formed. The polarization of the electric field enhances the hydrogen bonding forces, increases the probability of appearance of high water partitions, decreases the diffusion coefficient and free volume of water molecules, and presents anisotropy in its diffusion coefficient.
王伟, 董文妍, 李芳义, 蒋达, 宁中正. 升温过程中水在矿物油和纤维素界面扩散和聚集行为的分子模拟[J]. 电工技术学报, 2019, 34(17): 3696-3704.
Wang Wei, Dong Wenyan, Li Fangyi, Jiang Da, Ning Zhongzheng. Molecular Simulation of the Diffusion and Aggregation of Water at the Interface between Mineral Oil and Cellulose during Temperature Rising. Transactions of China Electrotechnical Society, 2019, 34(17): 3696-3704.
[1] Lundgaard L E, Hansen W, Linhjell D, et al.Aging of oil-impregnated paper in power transformers[J]. IEEE Transactions on Power Delivery, 2014, 19(1): 230-239. [2] Mikulecky A, Stih Z.Influence of temperature, moisture content and ageing on oil impregnated paper bushings insulation[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2013, 20(4): 1421-1427. [3] 王有元, 杨涛, 田苗, 等. 电场对绝缘纸中水分扩散特性的影响[J]. 电工技术学报, 2015, 30(1): 195-203. Wang Youyuan, Yang Tao, Tian Miao, et al.Impact of electric field on the moisture diffusion properties of insulation paper[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 195-203. [4] 林元棣, 廖瑞金, 夏桓桓, 等. 油纸绝缘微水二次扩散过渡过程的分析[J]. 电工技术学报, 2016, 31(10): 16-25. Lin Yuandi, Liao Ruijin, Xia Huanhuan, et al.Analysis of transition process during secondary diffusion of moisture in oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 16-25. [5] 陈伟根, 甘德刚, 刘强. 变压器油中水分在线监测的神经网络计算模型[J]. 高电压技术, 2007, 33(5): 73-78. Chen Weigen, Gan Degang, Liu Qiang.On-line monitoring model based on neural network for moisture content in transformer oil[J]. High Voltage Engineering, 2007, 33(5): 73-78. [6] 周利军, 汤浩, 吴广宁, 等. 油纸绝缘微水扩散的稳态分布[J]. 高电压技术, 2007, 33(8): 27-30. Zhou Lijun, Yang Hao, Wu Guangning, et al.quilibrium moisture distribution in oil-paper insulation[J]. High Voltage Engineering, 2007, 33(8): 27-30. [7] 王伟, 马志青, 李成榕, 等. 纤维素老化对油纸绝缘水分平衡的影响[J]. 中国电机工程学报, 2012, 32(31): 100-105. Wang Wei, Ma Zhiqing, Li Chengrong, et al.Impact of cellulose aging on moisture equilibrium of oil-pressboard insulation[J]. Proceedings of the CSEE, 2012, 32(31): 100-105. [8] 廖瑞金, 尹建国, 杨丽君, 等. 油纸绝缘热老化过程中含水量变化趋势及水分转移规律[J]. 高电压技术, 2010, 36(4): 828-834. Liao Ruijin, Yin Jianguo, Yang Lijun, et al.Moisture content variation and transfer of oil-paper insulation during thermal aging process[J]. High Voltage Engineering, 2010, 36(4): 828-834. [9] 杨丽君, 邓帮飞, 廖瑞金, 等. 应用时-温-水分叠加方法改进油纸绝缘热老化寿命模型[J]. 中国电机工程学报, 2011, 31(31): 196-203. Yang Lijun, Deng Bangfei, Liao Ruijin, et al.Improvement of lifetime model on thermal aging of oil-paper insulation by time temperature moisture superposition method[J]. Proceedings of the CSEE, 2011, 31(31): 196-203. [10] 杨丽君, 高思航, 高竣, 等. 油纸绝缘频域介电谱的修正Cole-Cole模型特征参量提取及水分含量评估方法[J]. 电工技术学报, 2016, 31(10): 26-33. Yang Lijun, Gao Sihang, Gao Jun, et al.Characteristic parameters extracted from modified Cole-Cole model and moisture content assessment methods study on frequency-domain dielectric spectroscopy of oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 26-33. [11] 刘君, 吴广宁, 周利军, 等. 变压器油纸绝缘微水扩散暂态的电介质频率响应[J]. 中国电机工程学报, 2013, 33(1): 171-178. Liu Jun, Wu Guangning, Zhou Lijun, et al.Dielectric frequency response of oil-paper composite insulation with transient moisture equilibrium[J]. Proceedings of the CSEE, 2013, 33(1): 171-178. [12] 王有元, 高竣, 刘捷丰, 等. 变压器油纸绝缘老化与水分含量评估频域介电特征量[J]. 电工技术学报, 2015, 30(22): 215-221. Wang Youyuan, Gao Jun, Liu Jiefeng, et al.Aging and moisture evaluation characteristic parameters for oil-paper insulation of transformer using frequency dielectric spectroscopy[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 215-221. [13] 马志青. 变温及老化条件下油纸绝缘间水分分布的研究[D]. 北京: 华北电力大学, 2013. [14] 赵素, 李金富, 周尧和. 分子动力学模拟及其在材料科学中的应用[J]. 材料导报, 2007, 21(4): 5-9. Zhao Su, Li Jinfu, Zhou Yaohe.Molecular dynamics simulation and its application in the materials science[J]. Materials Review, 2007, 21(4): 5-9. [15] Wang Xiaowei, Watanabe H, Fuji M, et al.Molecular dynamics simulation of NaCl at the air/water interface with shell model[J]. Chemical Physics Letters, 2008, 458(1-3): 235-238. [16] 刘君, 吴广宁, 周利军, 等. 油纸绝缘体系微水扩散的分子模拟[J]. 高电压技术, 2010, 36(12): 2907-2912. Liu Jun, Wu Guangning, Zhou Lijun, et al.Moisture diffusion in oil-paper insulation using molecular simulation[J]. High Voltage Engineering, 2010, 36(12): 2907-2912. [17] 李庆民, 黄旭炜, 刘涛, 等. 分子模拟技术在高电压绝缘领域的应用进展[J]. 电工技术学报, 2016, 31(12): 1-13. Li Qingmin, Huang Xuwei, Liu Tao, et al.Application progresses of molecular simulation methodology in the area of high voltage insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 1-13. [18] 刘枫林, 徐魏. 石蜡基和环烷基变压器油的性能比较[J]. 变压器, 2004, 41(7): 6-8. Liu Fenglin, Xu Wei.Performance comparison of paraffin-based and cycloalkyl-based transformers[J]. Transformer, 2004, 41(7): 6-8. [19] Oommen T V.Moisture equilibrium charts for transformer insulation drying practice[J]. IEEE Transactions on Power Apparatus Systems, 1984, 103(10): 3062-3067. [20] Theodorou D N, Suter U W.Atomistic modeling of mechanical properties of polymeric glasses[J]. Macromolecules, 1986, 19(1): 139-154. [21] Mazeau K, Heux K.Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2003, 107(10): 2394-2403. [22] Sun H, Mumby S J, Maple J R, et al.An ab initio CFF93 all-atom force field for polycarbonates[J]. Journal of the American Chemical Society, 1994, 116(7): 2978-2987. [23] Andrea T A, Swope W C, Andersen H C.The role of long ranged forces in determining the structure and properties of liquid water[J]. Journal of Chemical Physics, 1983, 79(9): 4576-4584. [24] Berendsen H J C, Postma J P M, Gunsteren W F V, et al. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics, 1984, 81(8): 3684-3690. [25] Pimentel G C, Mcclellan A L.Hydrogen bond[J]. Annual Review of Physical Chemistry, 2003, 22(1): 347-385. [26] Starr F W, Nielsen J K, Stanley H E.Fast and slow dynamics of hydrogen bonds in liquid water[J]. Physical Review Letters, 1999, 82(11): 2294-2297. [27] Smith J D, Cappa C D, Wilson K R, et al.Energetics of hydrogen bond network rearrangements in liquid water[J]. Science, 2004, 306(5697): 851-853. [28] 余翔, 韩铭, 杨小震. 分子动力学模拟研究线型聚乙烯链在强电场中的取向行为[J]. 高等学校化学学报, 2011, 32(1): 180-184. Yu Xiang, Han Ming, Yang Xiaozhen.Molecular dynamics simulation study on the reorientation behavior of linear polyethylene under high electric field[J]. Chemical Journal of Chinese Universities 2011, 32(1): 180-184.