The Simulation and Experiment of Magneto-Motive Ultrasound Imaging Based on Time Reversal Method
Zhang Shuai1,2, Li Zixiu1,2, Zhang Xueying1,2, Zhao Mingkang1,2, Xu Guizhi1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment School of Electrical Engineering Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province School of Electrical Engineering Hebei University of Technology Tianjin 300130 China
Abstract:Magnetic nanoparticles can specifically bind to the tumor, which has great significance and potential application prospects for early diagnosis or specific diagnosis of tumors. This paper presents a magneto-motive ultrasound imaging method based on the time reversal method. Herein, magneto-motive force is produced by a time-varying magnetic field to induce ultrasound in the magnetic nanoparticles labeled tissue, and an image of nanoparticles distribution is reconstructed. In this paper, the finite element method was used to establish nanoparticles labeling biological tissue models with different radii. The acoustic pressure signals of magneto-motive ultrasound were obtained by calculation and simulation. The nanoparticles distribution images were reconstructed based on the time inversion method. The biological tissue imitation models and fresh vitro biological tissue samples were built with labeled nanoparticles. The magneto-motive ultrasound imaging experiments were performed. The simulation and experimental results show that the consistency of nanoparticles distribution image boundary and the nanoparticles boundary of labeling biological tissue is higher. The imaging method can quickly and accurately obtain the size and position information of the imaging targets, which indicates that the effectiveness of the proposed method and provides a promising tool for magnetic nanoparticle-labeled biological tissues in molecular imaging.
张帅, 李子秀, 张雪莹, 赵明康, 徐桂芝. 基于时间反演的磁动力超声成像仿真与实验[J]. 电工技术学报, 2019, 34(16): 3303-3310.
Zhang Shuai, Li Zixiu, Zhang Xueying, Zhao Mingkang, Xu Guizhi. The Simulation and Experiment of Magneto-Motive Ultrasound Imaging Based on Time Reversal Method. Transactions of China Electrotechnical Society, 2019, 34(16): 3303-3310.
[1] Steinberg I, Ben-David M, Gannot I.A new method for tumor detection using induced acoustic waves from tagged magnetic nanoparticles[J]. Nano- medicine Nanotechnology Biology & Medicine, 2012, 8(5): 569-579. [2] 王秀利, 聂立波. 磁性纳米颗粒在生物医学领域中的应用[J]. 化学通报, 2009, 72(6): 489-494. Wang Xiuli, Nie Libo.Applications of magnetic nanoparticles in biomedicine[J]. Chemistry, 2009, 72(6): 489-494. [3] Stocke N A, Sethi P, Jyoti A, et al.Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer[J]. Biomaterials, 2017, 120: 115-125. [4] Lee E A, Yim H, Heo J, et al.Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering[J]. Archives of Pharmacal Research, 2014, 37(1): 120-128. [5] Oh J, Feldman M D, Kim J, et al.Detection of magnetic nanoparticles in tissue using magneto- motive ultrasound[J]. Nanotechnology, 2006, 17(16): 4183-4190. [6] Mehrmohammadi M, Oh J, Mallidi S, et al.Pulsed magneto-motive ultrasound imaging using ultrasmall magnetic nanoprobes[J]. Molecular Imaging, 2011, 10(2): 102-110. [7] Kang T, Li Fangyuan, Baik S, et al.Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy[J]. Biomaterials, 2017, 136: 98-114. [8] Norton S J, Vodinh T.Imaging the distribution of magnetic nanoparticles with ultrasound[J]. IEEE Transactions on Medical Imaging, 2007, 26(5): 660-665. [9] Mehrmohammadi M, Oh J, Mallidi S, et al.Pulsed magneto-motive ultrasound imaging using ultrasmall magnetic nanoprobes[J]. Molecular Imaging, 2011, 10(2): 102-110. [10] Qu Min, Mehrmohammadi M, Truby R, et al.Contrast-enhanced magneto-photo-acoustic imaging in vivo, using dual-contrast nanoparticles[J]. Photo- acoustics, 2014, 2(2): 55-62. [11] Tsalach A, Steinberg I, Gannot I.Tumor localization using magnetic nanoparticle-induced acoustic signals[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(8): 2313-2323. [12] Yoon K Y, Mehmohammadi M, Borwankar A, et al.Synthesis of iron oxide nanoclusters with enhanced magnetization and their applications in pulsed magneto-motive ultrasound imaging[J]. Nano, 2015, 10(5): 125-133. [13] 张帅, 侯琬姣, 张雪莹, 等. 基于真实乳腺模型的感应式磁声成像正问题[J]. 电工技术学报, 2016, 31(24): 126-133. Zhang Shuai, Hou Wanjiao, Zhang Xueying, et al.Forward problem in magnetoacoustic tomography with magnetic induction based on real model of breast[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 126-133. [14] Mariappan L, Shao Qi, Jiang Chunlan, et al.Magneto acoustic tomography with short pulsed magnetic field for in-vivo imaging of magnetic iron oxide nano- particles[J]. Nanomedicine Nanotechnology Biology & Medicine, 2016, 12(3): 689-699. [15] 黄欣, 刘国强, 夏慧, 等. 感应式磁声成像的脉冲磁场研究[J]. 电工技术学报, 2013, 28(2): 67-72. Huang Xin, Liu Guoqiang, Xia Hui, et al.Study of pulsed magnetic field used in magnetioacoustic tomography with magnetic induction[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 67-72. [16] 牛宗涛, 章程, 王瑞雪, 等. 脉冲重复频率对微秒脉冲滑动放电特性影响的实验研究[J]. 电工技术学报, 2016, 31(19): 191-198. Niu Zongtao, Zhang Cheng, Wang Ruixue, et al.Experimental study on the effect of the pulse repeti- tion frequency on the characteristics of microsecond- pulse gliding discharges[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 191-198. [17] Hu Gang, He Bin.Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biolo- gical tissues with microsecond magnetic stimulation[J]. Applied Physics Letters, 2012, 100(1): 0137041. [18] Mehrmohammadi M, Qu Min, Ma L L, et al.Pulsed magneto-motive ultrasound imaging to detect intra- cellular accumulation of magnetic nanoparticles[J]. Nanotechnology, 2011, 22(41): 415105. [19] Mehrmohammadi M, Shin T H, Qu Min, et al.In vivo pulsed magneto-motive ultrasound imaging using high-performance magnetoactive contrast nanoagents[J]. Nanoscale, 2013, 5(22): 11179-11186. [20] 李如意, 王晓换, 胡美璇, 等. RPROP神经网络非侵入式负荷分解中的应用[J]. 电力系统保护与控制, 2016, 44(7): 55-61. Li Ruyi, Wang Xiaohuan, Hu Meixuan, et al.Appli- cation of RPROP neural network in nonintrusive load decomposition[J]. Power System Protection and Control, 2016, 44(7): 55-61. [21] John R, Ippen E P.In vivo magnetomotive optical molecular imaging using targeted magnetic nano- probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8085-8090. [22] 蔡智超, 刘素贞, 张闯, 等. 永磁扰动检测有限元分析及优化设计[J]. 电工技术学报, 2015, 30(3): 67-72. Cai Zhichao, Liu Suzhen, Zhang Chuang, et al.Finite element analysis and optimum design of permanent magnetic field perturbation testing[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 67-72. [23] 王聪, 关新, 谭骏, 等. 永磁同步电机弱磁性能参数的有限元分析[J]. 电气技术, 2015, 16(7): 16-19. Wang Cong, Guan Xin, Tan Jun, et al.The finite element analysis of permanent magnet synchronous motor weak magnetic parameters[J]. Electrical Technology, 2015, 16(7): 16-19. [24] 张献, 章鹏程, 杨庆新, 等. 基于有限元方法的电动汽车无线充电耦合机构的磁屏蔽设计与分析[J]. 电工技术学报, 2016, 31(1): 71-79. Zhang Xian, Zhang Pengcheng, Yang Qingxin, et al.Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method[J]. Transactions of China Electro- technical Society, 2016, 31(1): 71-79. [25] 李岩松, 刘启智, 刘君, 等. 基于磁偶极子模型的材料缺陷漏磁检测正演问题的单元积分计算方法[J]. 电工技术学报, 2017, 32(21): 176-185. Li Yansong, Liu Qizhi, Liu Jun, et al.The unit integral calculation method of defective material's forward question of magnetic flux leakage detection based on the magnetic dipole model[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 176-185. [26] 王世刚, 马任, 张顺起, 等. 基于声偶极子理论的磁声成像声源发生机制探讨[J]. 生物医学工程学杂志, 2014, 31(1): 91-96. Wang Shigang, Ma Ren, Zhang Shunqi, et al.Research on acoustic source generating mechanism of magnetoacoustic tomography based on acoustic dipole theory[J]. Journal of Biomedical Engineering, 2014, 31(1): 91-96. [27] 刘文霞, 高丹丹, 赵天阳, 等. 基于投影寻BP神经网络的稳健型风场功率预测算法[J]. 电力系统保护与控制, 2012, 40(23): 30-35. Liu Wenxia, Gao Dandan, Zhao Tianyang, et al.A robust algorithm for wind power forecasting based on projection pursuit and back propagation neural network[J]. Power System Protection and Control, 2012, 40(23): 30-35. [28] 王凯亮, 曾江, 王克英. 一种基于BP神经网络的谐波检测方案[J]. 电力系统保护与控制, 2013, 41(17): 44-48. Wang Kailiang, Zeng Jiang, Wang Keying.A harmonic detecting scheme based on BP neural network[J]. Power System Protection and Control, 2013, 41(17): 44-48.