Effect of Transcranial Magnetic-Acoustic Electrical Stimulation on Neuronal Discharge Activity Based on GrC Model
Zhang Shuai1,2, Gao Xinyu1,2, Zhou Zhenyu1,2, Liu Yaze1,2, Xu Guizhi1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:Transcranial magnetic-acoustical electrical stimulation (TMAES) is a new type of non-invasive brain stimulation in neural tissue that uses static magnetic field and ultrasonic waves to generate current to stimulate nerve tissue through magneto-acoustic electrical effects (also known as Hall effect). The neurological regulation of the cerebellum can improve the balance of movement disorders and other diseases, so the establishment of a model of cerebellar granule cells is of great significance. Firstly, based on the cerebellar granule cell model (GrC model), the changes of the discharge pattern of the GrC model neurons under different modulation frequencies of TMAES were compared. Secondly, the different positions of the neurons are stimulated, and the direction of propagation of the action potential is compared and analyzed. The simulation results show that the TMAES has an important influence on the firing rhythm of the GrC model neurons. The research in this paper is helpful to understand the neural mechanism of TMAES.
[1] Boehringer A, Macher K, Dukart J, et al.Cerebellar transcranial direct current stimulation modulates verbal working memory[J]. Brain Stimulation, 2013, 6(4): 649-653. [2] Wagner M J.Cognitive signaling in cerebellar granule cells[J]. Official Publication of the American College of Neuropsychopharmacology, 2018, 43(1): 222-223. [3] Maex R, Schutter E R.Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions[J]. European Journal of Neuroscience, 2010, 25(11): 3347-3358. [4] 吕敬祥, 刘国强. 磁声电无损检测及改进的EMD消噪方法[J]. 电工技术学报, 2018, 33(17): 3935-3942. Lü Jingxiang, Liu Guoqiang.Magneto-acousto-electrical NDT and improved EMD de-noising algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3935-3942. [5] 张闯, 李福彪, 刘素贞, 等. 电磁加载对超声传播性的影响[J]. 电工技术学报, 2017, 32(2): 102-107. Zhang Chuang, Li Fubiao, Liu Suzhen, et al.Impacts of the electromagnetic loading on the propagation of the ultrasonic wave[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 102-107. [6] 孙文秀, 刘国强, 夏慧, 等. 非铁磁材料的电磁超声接收过程数值模拟及实验研究[J]. 电工技术学报, 2018, 33(19): 4443-4449. Sun Wenxiu, Liu Guoqiang, Xia Hui, et al.Numerical simulation and experimental study of electromagnetic acoustic transducer receiving process in nonferromagnetic material[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4443-4449. [7] 张闯, 蒋盼, 刘素贞, 等. 电磁声发射信号的压缩与重构处理[J]. 电工技术学报, 2017, 32(9): 121-128. Zhang Chuang, Jiang Pan, Liu Suzhen, et al.Compression and reconstruction processing of the electromagnetically induced acoustic emission signal[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 121-128. [8] Rossini P M, Burke D, Chen R, et al.Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application[J]. Clinical Neurophysiology, 2015, 126(6): 1071-1107. [9] Lefaucheur J P, André-Obadia N, Antal A, et al.Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)[J]. Clinical Neurophysiology, 2014, 125(11): 2150-2206. [10] 李慧雨, 周晓青, 张顺起, 等. 基于磁声耦合效应的聚焦电刺激方法的初探[J]. 生物医学工程研究, 2015, 34(4): 201-206. Li Huiyu, Zhou Xiaoqing, Zhang Shunqi, et al.Approach for focused electric stimulation based on the magneto-acoustic effect[J]. Journal of Biomedical Engineering Research, 2015, 34(4): 201-206. [11] Yuan Yi, Li Xiaoli.Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model[J]. Chinese Physics B, 2015, 24(12): 373-378. [12] Yuan Yi, Peng Na, Chen Yudong, et al.A phase-locking analysis of neuronal firing rhythms with transcranial magneto-acoustical stimulation based on the Hodgkin-Huxley neuron model[J]. Frontiers in Computational Neuroscience, 2017, 11: 1. [13] 刘世坤, 张鑫山, 刘志朋, 等. 经颅磁声耦合电刺激技术应用于小鼠的实验研究[J]. 生物医学工程研究, 2018, 37(1): 11-15. Liu Shikun, Zhang Xinshan, Liu Zhipeng, et al.Experimental study in mice on the technology of transcranial magneto-acoustic coupling electrical stimulation[J]. Journal of Biomedical Engineering Research, 2018, 37(1): 11-15. [14] 周晓青, 刘世坤, 张鑫山, 等. 经颅磁声刺激中超声刺激的作用与影响[J]. 医疗卫生装备, 2018, 39(5): 17-21. Zhou Xiaoqing, Liu Shikun, Zhang Xinshan, et al.Effect of transcranial ultrasound stimulation on transcranial magnetoacoustic stimulation[J]. Chinese Medical Equipment Journal, 2018, 39(5): 17-21. [15] Zhang Shuai, Cui Kun, Zhang Xueying, et al.Effect of transcranial ultrasonic-magnetic stimulation on neural spiking behaviours in Izhikevich model[J]. IEEE Transactions on Magnetics, 2018, 54(3): 5000204 [16] 郭磊, 陈云阁, 王瑶, 等. 基于C0复杂度的磁刺激内关穴的脑功能网络构建与分析[J]. 电工技术学报, 2017, 32(12): 155-163. Guo Lei, Chen Yunge, Wang Yao, et al.Construction and analysis of brain functional network based on C0 complexity Neiguan[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 155-163. [17] 李江涛, 曹辉, 郑敏军, 等. 多通道经颅磁刺激线圈阵列的驱动与控制[J]. 电工技术学报, 2017, 32(22): 158-165. Li Jiangtao, Cao Hui, Zheng Minjun, et al.The drive and control of multi-channel transcranial magnetic stimulation coil array[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 158-165. [18] 伊国胜, 王江, 魏熙乐, 等. 无创式脑调制的神经效应研究进展[J]. 科学通报, 2016, 61(8): 819-834. Yi Guosheng, Wang Jiang, Wei Xile, et al.Developments of neural effects induced by noninvasive brai modulation[J]. Chinese Science Bulletin, 2016, 61(8): 819-834. [19] Kim H, Chiu A, Lee S D, et al.Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters[J]. Brain Stimulation, 2014, 7(5): 748-756. [20] Rezayat E, Toostani I G.A review on brain stimulation using low intensity focused ultrasound[J]. Basic & Clinical Neuroscience, 2016, 7(3): 187-194. [21] Diwakar S, Magistretti J, Goldfarb M, et al.Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells[J]. Journal of Neurophysiology, 2009, 101(2): 519-532. [22] Tahon K, Wijnants M, De Schutter E, et al.Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input[J]. Journal of Neurophysiology, 2011, 105(3): 1327-1341. [23] Diwakar S, Lombardo P, Solinas S, et al.Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control[J]. Plos One, 2011, 6(7): e21928. [24] D’Angelo E, Mazzarello P, Prestori F, et al. The cerebellar network: from structure to function and dynamics[J]. Brain Research Reviews, 2011, 66(1-2): 5-15. [25] Goldfarb M, Schoorlemmer J, Williams A, et al.Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels[J]. Neuron, 2007, 55(3): 449-463.