Abstract:The current-carrying friction characteristics of the electrified railway pantograph catenary system seriously affect the life of the pantograph slider and the catenary wire and the current quality of the electric locomotive. In this paper, the self-developed sliding experimental machine was used to simulate the contact condition of pantograph and catenary in high-speed railway, and the research on the current-carrying friction modeling of pantograph-catenary under fluctuation contact pressure was carried out. The characteristics of the friction coefficient related to contact pressure fluctuation frequency and amplitude and current at different speeds are obtained by the experimental data. The models of friction coefficient related to fluctuation contact pressure and current are established, and combine them with the speed-related Stribeck friction model to achieve the friction coefficient correction in the friction model. Finally, the current-carrying friction model related to speed, fluctuation contact pressure and current were established. The unknown parameters of the model was identified by the Levenberg-Marquardt and Universal Global Optimization, and the validity of the model was verified by the experimental data, which provides a reference for the prediction of the friction of pantograph-catenary system and research on friction and wear properties.
[1] 吴广宁, 周悦, 雷栋, 等. 弓网电接触研究进展[J]. 高电压技术, 2016, 42(11): 3495-3506. Wu Guangning, Zhou Yue, Lie Dong, et al.Research advances in electric contact between pantograph and catenary[J]. High Voltage Engineering, 2016, 42(11): 3495-3506. [2] Gao Anzhu, Zou Yun, Wang Zhidong, et al.A general friction model of discrete interactions for tendon actuated dexterous manipulators[J]. Journal of Mechanisms and Robotics, 2017, 9(4): 1-7. [3] Hola J, Cid Alfaro M V, de Rooij M B, et al. Advanced friction modeling for sheet metal forming[J]. Wear, 2012, 286-287: 66-78. [4] Gola M M, Liu Tong.A direct experimental-numerical method for investigations of a laboratory under-platform damper behavior[J]. International Journal of Solids and Structures, 2014, 51(25-26): 4245-4259. [5] 李东武, 徐超. 考虑法向载荷变化的Iwan模型及其特性分析[J]. 哈尔滨工业大学学报, 2017, 49(10): 138-144. Li Dongwu, Xu Chao.Iwan model considering variable normal load and its characteristic analysis[J]. Journal of Harbin Institute of Technology, 2017, 49(10): 138-144. [6] 李克敏, 上官宝, 杜三明, 等. 摩擦速度和电流密度对铜基复合材料载流摩擦磨损性能的影响[J]. 机械工程材料, 2015, 39(3): 22-27. Li Kemin, Shangguan Bao, Du Sanming, et al.Effects of friction velocity and current density on current-carrying friction and wear properties of copper matrix composites[J]. Materials for Mechanical Engineering, 2015, 39(3): 22-27. [7] Chen Guangxiong, Li Fengxue, Dong Lin, et al.Friction and wear behaviour of stainless steel rubbing against copper-impregnated metallized carbon[J]. Tribology International, 2009, 42(6): 934-939. [8] 董霖, 李丰学, 陈光雄, 等. 有无电流工况下钢铝复合轨/受电靴的摩擦磨损特性[J]. 润滑与密封, 2006, 6(6): 36-38. Dong Lin, Li Fengxue, Chen Guangxiong, et al.Friction and wear of steel aluminum composite conductor rail/collector shoe with and without direct current[J]. Lubrication Engineering, 2006, 6(6): 36-38. [9] 陈忠华, 唐博, 时光, 等. 弓网多目标滑动电接触下最优压力载荷[J]. 电工技术学报, 2015, 30(17): 154-160. Chen Zhonghua, Tang Bo, Shi Guang, et al.Optimal pressure load under multi-objective sliding electric contact in the pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 154-160. [10] 陈忠华, 王铁军, 回立川, 等. 弓网系统滑动电接触最优压力载荷的确定[J]. 电工技术学报, 2013, 28(6): 86-92. Chen Zhonghua, Wang Tiejun, Hui Lichuan, et al.Determination of the optimal contact load in pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 86-92. [11] 时光, 陈忠华, 郭凤仪. 强电流滑动电接触下最佳法向载荷[J]. 电工技术学报, 2014, 29(1): 23-30. Shi Guang, Chen Zhonghua, Guo Fengyi.Optimal normal load of sliding electrical contacts under high current[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 23-30. [12] 郭凤仪, 王贺, 王智勇, 等. 弓网系统动态接触压力特性[J]. 辽宁工程技术大学学报, 2017, 36(6): 640-644. Guo Fengyi, Wang He, Wang Zhiyong, et al.Study on dynamic contact force of pantograph catenary system[J]. Journal of Liaoning Technical University, 2017, 36(6): 640-644. [13] 李博. 高精度伺服系统的摩擦力建模及补偿[D]. 哈尔滨: 哈尔滨工业大学, 2008. [14] 林朝安. 基于能量法则的Stribeck摩擦模型参数辨识及其应用研究[D]. 南宁: 广西大学, 2015. [15] 张新刚. 基于扩展Stribeck效应的摩擦实验建模及系统动力学研究[D]. 上海: 上海交通大学, 2009. [16] Cheng Xianyun, Chai Fuxin, Gao Jing.1stOpt and global optimization platform—comparison and case study[C]//2011 4th IEEE International Conference on Computer Science and Information Technology (ICCSIT 2011), Chengdu, 2011: 328-332. [17] 胡淑彦, 程先云, 柴福鑫, 等. 基于1stOpt的水库预泄期最优泄流调度模型[J]. 河海大学学报(自然科学版), 2011, 39(4): 377-383. Hu Shuyan, Cheng Xianyun, Chai Fuxin, et al.Optimal regulation model of reservoir discharge based on 1stOpt[J]. Journal of Hohai University (Natural Sciences), 2011, 39(4): 377-383. [18] 梅迎春, 傅惠南, 胡昆, 等. 基于曲线拟合的二自由度系统自由振动的响应参数求解[J]. 机床与液压, 2016, 44(3): 71-74. Mei Yingchun, Fu Huinan, Hu Kun, et al.Solving of response parameters of 2-DOF system of free vibration based on curve fitting[J]. Machine Tool & Hydraulics, 2016, 44(3): 71-74.