Abstract:As one of the most representative applications of self-stable high temperature superconducting magnetic levitation technology, high temperature superconducting magnetic bearing (SMB) can realize passive high-speed rotation without any friction, which provides a new way to markedly improve and upgrade the performance of present machinery and equipment with common bearings. In order to summarize the research and development status of SMB, the typical prototypes are described respectively from America, Germany, Japan and Korea, as well as other domestic and foreign groups. The key technical issues and present hotspot are pointed out and discussed to explain the future development and potential prospect.
邓自刚, 王家素, 王素玉, 郑珺, 林群煦, 张娅. 高温超导磁悬浮轴承研发现状[J]. 电工技术学报, 2009, 24(9): 1-8.
Deng Zigang, Wang Jiasu, Wang Suyu, Zheng Jun, Lin Qunxu, Zhang Ya. Research and Development Status of High Temperature Superconducting Magnetic Bearings. Transactions of China Electrotechnical Society, 2009, 24(9): 1-8.
[1] Moon F C. Superconducting levitation[M]. New York: John Wiley and Sons, 1994. [2] Hull J R. Superconducting bearings[J]. Supercond. Sci. Technol., 2000, 13(2): R1-R15. [3] Ma K B, Postrekhin Y V, Chu W K. Superconductor and magnet levitation devices[J]. Rev. Sci. Instrum., 2003, 74(12): 4989-5017. [4] Walter H, Bock J, Frohne C, et al. First heavy load bearing for industrial application with shaft loads up to 10 kN[J]. J. Phys. Conf. Ser., 2006, 43:995-998. [5] Koshizuka N, Ishikawa F, Nasu H, et al. Present status of R&D on superconducting magnetic bearing technologies for flywheel energy storage system[J]. Physica C, 2002, 378-381(Part 1): 11-17. [6] Wang J S, Wang S Y, Zeng Y W, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world[J]. Physica C, 2002, 378-381(Part 1): 809-814. [7] Day A C, Strasik M, et al. Design and testing of the HTS bearing for a 10 kWh flywheel system[J]. Supercond. Sci. Technol., 2002, 15(5): 838-841. [8] Floegel-Delor U, Rothfeld R, Wippich D, et al. Fabrication of HTS bearings with ton load performance[J]. IEEE Trans. Appl. Supercond., 2007, 17(2): 2142-2145. [9] Han Y H, Jung S Y, Lee J P, et al. Characteristics of a superconductor journal bearing substator for a 100 kWh SFES[C]. 8th European Conference on Applied Superconductivity, Brussels, Belgium, 2007: 16-20. [10] 谭凤顺, 金能强, 夏东, 等. 无源高温超导磁浮轴承磁悬浮力的计算[J]. 电工电能新技术, 2002, 21(1): 16-19. [11] 张江华, 曾佑文, 王家素, 等. 高温超导磁悬浮轴承悬浮力数值分析[J]. 低温与超导, 2007, 35(2): 125-128. [12] Fang J R, Lin L Z, Yan L G, et al. A new flywheel energy storage system using hybrid superconducting magnetic bearings[J]. IEEE Trans. Appl. Supercond., 2003, 11(1): 1657-1660. [13] 李永亮, 方进, 郭明珠. 一种新型超导混合磁悬浮轴承的悬浮力特性分析[C]. 第九届全国超导学术研讨会, 西安, 2007. [14] Deng Z, Lin Q, Ma G, et al. A double-superconducting axial bearing system for an energy storage flywheel model[J]. J. Phys. Conf. Ser., 2008, 97: 012283. [15] Werfel F N, Floegel-Delor U, Riedel T, et al. Operation and design selection of high temperature superconducting magnetic bearings[J]. Supercond. Sci. Technol., 2004, 17(10): 1192-1195. [16] Demachi K, Masaie I, Ichihara T, et al. Rotation speed degradation of superconducting magnetic bearing made of unsymmetrical shaped YBCO bulks[J]. Physica C, 2005, 426-431(Part 1): 826-833. [17] Koshizuka N. R&D of superconducting bearing technologies for flywheel energy storage systems[J]. Physica C, 2006, 445-448: 1103-1108. [18] Luo Y, Takagi T, Miya K. Reduction of levitation decay in high Tc superconducting magnetic bearings[J]. Cryogenics, 1999, 39(4): 331-338. [19] Moon F C, Yanoviak M M, Ware R. Hysteretic levitation forces in superconducting ceramics[J]. Appl. Phys. Lett., 1988, 52(18): 1534-1536. [20] Hikihara T, Adachi H, Moon F C, et al. Dynamical behavior of flywheel rotor suspended by hysteretic force of HTSC magnetic bearing[J]. Journal of Sound and Vibration, 1999, 228(4): 871-887. [21] Werfel F N, Floegel-Delor U, Riedel T, et al. A compact HTS 5 kWh/250 kW flywheel energy storage system[J]. IEEE Trans. Appl. Supercond., 2007, 17(2): 2138-2141. [22] Strasik M, Johnson P E, Day A C, et al. Design, fabrication, and test of a 5-kWh/100-kW flywheel energy storage utilizing a high-temperature superconducting bearing[J]. IEEE Trans. Appl. Supercond., 2007, 17(2): 2133-2137. [23] Werfel F N, Floegel-Delor U, Riedel T, et al. 250 kW flywheel with HTS magnetic bearing for industrial use[J]. J. Phys. Conf. Ser., 2008, 97: 012206. [24] Shu Q S, Cheng G F, Susta J, et al. A six-meter long prototype of the mag-lev cryogen transfer line[J]. IEEE Trans. Appl. Supercond., 2005, 15(2): 2297-2300. [25] Zhang Y, Postrekhin Y, Ma K B, et al. Reaction wheel with HTS bearings for mini-satellite attitude control[J]. Supercond. Sci. Technol., 2002, 15(5): 823-825. [26] Siems S O, Canders W R, Walter H, et al. Superconducting magnetic bearings for a 2MW/10kWh class energy storage flywheel system[J]. Supercond. Sci. Technol., 2004, 17(5): S229-S233.