Abstract:Firstly,from the point of domestic and overseas energy development,the paper discusses the characteristics of multiple energy resources and multiple conversions of the power system caused by widely used new energy resources.Accordingly,the constitution and structure of the new generation power grid are visualized.Based on that,the six distinctive characteristics in the development of the power grid are discussed in detail.And one of the core problems for the future power grid,which is the widely used power electronics technology in the power system and its five key technologies,is analyzed thoroughly.Furthermore,the paper summarizes the basic problems in the complex AC-DC system with multiple energy resources and multiple conversions,which provide the guidance for the improvement and development of the power electronic technologies in the new generation of the power grid.
肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15): 1-14.
Xiao Xiangning. Basic Problems of the New Complex AC-DC Power Grid with Multiple Energy Resources and Multiple Conversions. Transactions of China Electrotechnical Society, 2015, 30(15): 1-14.
[1] 董朝阳,赵俊华,文福拴,等.从智能电网到能源互联网:基本概念与研究框架[J].电力系统自动化,2014,38(15):1-11. Dong Chaoyang,Zhao Junhua,Wen Fushuan,et al.From smart grid to energy internet:basic concept and research framework[J].Automation of Electric Power Systems,2014,38(15):1-11. [2] 覃一宁.美国发展新能源的政策思路、技术路径分析及对中国的借鉴启示[R].北京:2009. [3] U.S.Energy Information Administration.Annual energy review 2011[R].U.S.Energy Information Administration,2011. [4] 汉能控股集团,全联新能源.全球新能源发展报告[R].北京:2014. [5] Renewable Energy Policy Network for the 21st Century.Renewables 2014 global status report[R].Renewable Energy Policy Network for the 21st Century,2014. [6] Communication from the commission to European Parliament,the Council,Renewable energy,Progressing towards the 2020 target,commission staff working document[R].Brussels,Belgium:European Commission,2011. [7] Communication from the commission to European Parliament,the Council,the European economic and social committee and the committee of the Regions,Energy Roadmap 2050,commission staff working document[R].Brussels,Belgium:European Commission,2011. [8] 史丹.中国可再生能源发展目标及实施效果分析[J].南京大学学报:哲学.人文科学.社会科学,2009(3):29-36. Shi Dan.Objectives of renewable energy development and the effects in China[J].Journal of Nanjing University(Philosophy,Humanities and Social Sciences),2009(3):29-36. [9] 中华人民共和国发展和改革委员会.可再生能源发展“十二五”规划[E].北京:中华人民共和国国家发展和改革委员会,2011. [10]United States Department of Energy Office of Electric Transmission and Distribution.“Grid 2030” a national vision for electricity’s second 100 years[R].Washington.DC:United States Department of Energy,2003. [11]United States Department of Energy Office of Electric Transmission and Distribution.National electric delivery technologies roadmap[R].Washington.DC:United States Department of Energy,2004. [12]Airtricity Inc.European offshore supergrid proposal-creating a more powerful Europe-vision and executive summary[R].London:Airtricity Inc,2006. [13]陈坚.电力电子学[M].北京:高等教育出版社,2004. [14]李勃.电力电子——快速成长应用广阔的节电产业[J].电气时代,2007(6):24-30. Li Bo.Power electronics——Fast developmental and widely applied power saving industry[J].Electric Age,2007(6):24-30. [15]Jiang H,Ekstrom A.Multi-terminal HVDC systems in urban areas of large cities[J].IEEE Transactions on Power Delivery,1998,13(4):1278-1284. [16]Lu Weixing,Ooi B T.Multi-terminal DC transmission system for wind farms[C].IEEE Power Engineering Society Winter Meeting,Columbus,OH,2001,3:1091-1096. [17]Lu Weixing,Ooi B T.Optimal acquisition and aggregation of offshore wind power by multi-terminal voltage source HVDC[J].IEEE Transactions on Power Delivery,2003,18(1):201-206. [18]Lu Weixing,Ooi B T.Premium quality power park based on multi-terminal HVDC[J].IEEE Transactions on Power Delivery,2005,20(2):978-983. [19]刘振亚.智能电网技术[M].北京:中国电力出版社,2010. [20]黄如,叶乐,廖怀林.可再生能源互联网中的微电子技术[J].中国科学:信息科学,2014,44(6):728-742. Huang Ru,Ye Le,Liao Huailin.Microelectronics technologies in renewable energy internet[J].Science China:Information Science,2014,44(6):728-742. [21]Yang Y,Littler T,Sezer S,et al.Impact of cyber-security issues on smart grid[C].2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies,Manchester,2011:1-7. [22]郝为民.有序用电关键技术研究与需求响应应用展望[J].电气应用,2013(1):6-9. Hao Weimin.Key technology study on orderly power utility and application prospect for demand response[J].Electrotechnical Application,2013(1):6-9. [23]王刚,范学鑫,付立军,等.采用周期轨Poincaré映射的非线性电力电子系统小干扰稳定性分析[J].中国电机工程学报,2012,32(1):84-92. Wang Gang,Fan Xuexin,Fu Lijun,et al.Small signal stability analysis of nonlinear power electronic systems based on Poincaré mapping of the periodic orbit[J].Proceedings of the CSEE,2012,32(1):84-92. [24]肖湘宁,罗超,陶顺.电气系统功率理论的发展与面临的挑战[J].电工技术学报,2013,28(9):1-10. Xiao Xiangning,Luo Chao,Tao Shun.Development and challenges of power theory[J].Transactions of China Electrotechnical Society,2013,28(9):1-10. [25]汤广福,刘文华.提高电网可靠性的大功率电力电子技术基础理论[M].北京:清华大学出版社,2010. [26]Luszcz J.High frequency harmonics emission of modern power electronic AC-DC converters[C].2013 8th International Conference on Compatibility and Power Electronics,Ljubljana,2013:269-274. [27]Li Ming,Wang Yue,Lei Wanjun.Inter-harmonic resonance suppression with hybrid parallel power filters[C].International Power Electronics Conference,Sapporo,2010:1671-1674. [28]Messo T,Jokipii J,Aapro A,et al.Time and frequency-domain evidence on power quality issues caused by grid-connected three-phase photovoltaic inverters[C]. 16th European Conference on Power Electronics and Applications,Lappeenranta,2014:1-9. [29]De Rosa F,Langella R,Sollazzo A,et al.On the interharmonic components generated by adjustable speed drives[J].IEEE Transactions on Power Delivery,2005,20(4):2535-2543. [30]Soltani H,Loh P C,Blaabjerg F,et al.Sources and mitigation of interharmonics in back-to-back controllable drives[C].16th European Conference on Power Electronics and Applications (EPE’14-ECCE Europe),Lappeenranta,2014:1-9. [31]Langella R,Sollazzo A,Testa A.A new approach for the computation of harmonics and interharmonics produced by AC/DC/AC conversion systems with PWM inverters[J].European Transactions on Electrical Power,2010,20(1):68-82. [32]郭春义.新型混合双馈入直流输电系统的基础特性研究[D].北京:华北电力大学,2012. [33]张文亮,汤涌,曾南超.多端高压直流输电技术及应用前景[J].电网技术,2010,34(9):1-6. Zhang Wenliang,Tang Yong,Zeng Nanchao.Multi-terminal HVDC transmission technologies and its application prospects in China[J].Power System Technology,2010,34(9):1-6. [34]汤广福,贺之渊,庞辉.柔性直流输电工程技术研究、应用及发展[J].电力系统自动化,2013,37(15):3-14. Tang Guangfu,He Zhiyuan,Pang Hui.Research,application and development of VSC-HVDC engineering technology[J].Automation of Electric Power Systems,2013,37(15):3-14. [35]梁少华,田杰,曹冬明,等.柔性直流输电系统控制保护方案[J].电力系统自动化,2013,37(15):59-65. Liang Shaohua,Tian Jie,Cao Dongming,et al.A control and protection scheme for VSC-HVDC system[J].Automation of Electric Power Systems,2013,37(15):59-65. [36]郑蕤.带串联补偿的交直流并列系统次同步振荡特性研究[D].北京:华北电力大学,2011. [37]Xiao Xiangning,Zhang Jian,Guo Chunlin,et al.A new subsynchronous torsional interaction and its mitigation countermeasures[C].IEEE Energytech Cleveland,OH,2013:1-5. [38]毕天姝,孔永乐,肖仕武,等.大规模风电外送中的次同步振荡问题[J].电力科学与技术学报,2012,27(1):10-15. Bi Tianshu,Kong Yongle,Xiao Shiwu,et al.Review of sub-synchronous oscillation with large-scale wind power transmission[J].Journal of Electric Power Science and Technology,2012,27(1):10-15. [39]中华人民共和国发展和改革委员会.可再生能源中长期发展规划[E].北京:中华人民共和国国家发展和改革委员会,2007. [40]Thirumalaivasan R,Janaki M,Prabhu N.Damping of SSR using subsynchronous current suppressor with SSSC[J].IEEE Transactions on Power Systems,2013,28(1):64-74. [41]Faried S O,Unal I,Rai D,et al.Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators[J].IEEE Transactions on Power Systems,2013,28(1):452-459. [42]Rai D,Faried S O,Ramakrishna G,et al.An SSSC-based hybrid series compensation scheme capable of damping subsynchronous resonance[J].IEEE Transactions on Power Delivery,2012,27(2):531-540. [43]Xie Xiaorong,Guo Xijiu,Han Yingduo.Mitigation of multimodal SSR using SEDC in the Shangdu series-compensated power system[J].IEEE Transactions on Power Systems,2011,26(1):384-391. [44]Chen Wuhui,Bi Tianshu,Yang Qixun,et al.Analysis of nonlinear torsional dynamics using second-order solutions[J].IEEE Transactions on Power Systems,2010,25(1):423-432. [45]李伟,肖湘宁,赵洋.无功发生源抑制次同步振荡的机理分析[J].电工技术学报,2011,26(4):168-174. Li Wei,Xiao Xiangning,Zhao Yang.Mechanism analysis of static var source depressing subsynchronous oscillations[J].Transactions of China Electrotechnical Society,2011,26(4):168-174. [46]谢小荣,武云生,林惊涛,等.采用遗传-模拟退火算法优化设计SVC次同步阻尼控制器[J].电力系统自动化,2009,33(19):11-14. Xie Xiaorong,Wu Yunsheng,Lin Jingtao,et al.Optimal design of SVC subsynchronous damping controller using genetic and simulated annealing algorithm[J].Automation of Electric Power Systems,2009,33(19):11-14. [47]Lawrence C,Gross J P.Sub-synchronous grid conditions:new event,new problem,and new solutions[C].Western Protective Relay Conference,Spokane Washington,2010. [48]Adams J,Carter C,Huang Shun-Hsien.ERCOT experience with sub-synchronous control interaction and proposed remediation[C].IEEE PES Transmission and Distribution Conference and Exposition (T&D),Orlando,FL,2012:1-5. [49]Irwin G D,Jindal A K,Isaacs A L.Sub-synchronous control interactions between type 3 wind turbines and series compensated AC transmission systems[C].IEEE Power and Energy Society General Meeting,San Diego,CA,2012:1-6. [50]Badrzadeh B,Saylors S.Susceptibility of wind turbines to sub-synchronous control and torsional interaction[C].IEEE PES Transmission and Distribution Conference and Exposition (T&D),Orlando,FL,2012:2073-2082. [51]Nath R,Grande-Moran C.Study of sub-synchronous control interaction due to the interconnection of wind farms to a series compensated transmission system[C].IEEE PES Transmission and Distribution Conference and Exposition (T&D),Orlando,FL,2012:1-6. [52]Suriyaarachchi D H R,Annakkage U D,Karawita C,et al.A procedure to study sub-synchronous interactions in wind integrated power systems[J].IEEE Transactions on Power Systems,2013,28(1):377-384. [53]Blaabjerg F,Ma Ke.Future on power electronics for wind turbine systems[J].IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013,1(3):139-152. [54]Reliawind.Report on wind turbine reliability profiles-field data reliability analysis[R].2011. [55]Moore L M,Post H N.Five years of operating experience at a large,utility-scale photovoltaic generating plant[J].Progress in Photovoltaics:Research and Applications,2008,16(3):249-259. [56]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14+23. Wang Chengshan,Li Peng.Development and challenges of distributed generation,the micro-grid and smart distribution system[J].Automation of Electric Power Systems,2010,34(2):10-14+23. [57]陈洁,杨秀,朱兰,等.微网多目标经济调度优化[J].中国电机工程学报,2013,33(19):57-66+19. Chen Jie,Yang Xiu,Zhu Lan,et al.Microgrid multi-objective economic dispatch optimization[J].Proceedings of the CSEE,2013,33(19):57-66+19. [58]吴雄,王秀丽,王建学,等.微网经济调度问题的混合整数规划方法[J].中国电机工程学报,2013,33(28):1-9. Wu Xiong,Wang Xiuli,Wang Jianxue,et al.Economic generation scheduling of a microgrid using mixed integer programming[J].Proceedings of the CSEE,2013,33(28):1-9. [59]石庆均,耿光超,江全元.独立运行模式下的微网实时能量优化调度[J].中国电机工程学报,2012,32(16):26-35. Shi Qingjun,Geng Guangchao,Jiang Quanyuan.Real-time optimal energy dispatch of standalone microgrid[J].Proceedings of the CSEE,2012,32(16):26-35. [60]Ng E J,El-Shatshat R A.Multi-microgrid control systems (MMCS)[C].IEEE Power and Energy Society General Meeting,Minneapolis,MN,2010:1-6. [61]江润洲,邱晓燕,李丹,等.含储能系统的多微网智能配电系统经济运行[J].电网技术,2013,37(12):3596-3602. Jiang Runzhou,Qiu Xiaoyan,Li Dan,et al.Economic operation of smart distribution network containing multi microgrids and energy storage system[J].Power System Technology,2013,37(12):3596-3602. [62]周永智,吴浩,李怡宁,等.基于MCS_PSO算法的邻近海岛多微网动态调度[J].电力系统自动化,2014,38(9):204-210. Zhou Yongzhi,Wu Hao,Li Yining,et al.Dynamic dispatch of multi-microgrid for neighboring islands based on MCS-PSO algorithm[J].Automation of Electric Power Systems,2014,38(9):204-210. [63]江润洲,邱晓燕,李丹.基于多代理的多微网智能配电网动态博弈模型[J].电网技术,2014,38(12):3321-3327. Jiang Runzhou,Qiu Xiaoyan,Li Dan.Multi-agent system based dynamic game model of smart distribution network containing multi-microgrid[J].Power System Technology,2014,38(12):3321-3327. [64]高春凤.微网群自助与协调控制关键技术研究[D].北京:中国农业大学,2014. [65]张明锐,杜志超,黎娜,等.高压微网孤岛运行时频率稳定控制策略研究[J].中国电机工程学报,2012,32(25):20-26+6. Zhang Mingrui,Du Zhichao,Li Na,et al.Control strategies of frequency stability for islanding high-voltage microgrids[J].Proceedings of the CSEE,2012,32(25):20-26+6.