Abstract:As a high proportion of renewable energy is connected to the power grid, the system is faced with new challenges in terms of security and reliability, and the related research on improving the intraday balanced resource allocation scheme to increase the operational flexibility of system has attracted extensive attention. Based on the existing day-ahead scheduling results, this paper focuses on the schedulability of flexibility reserve results for the intra-day 2h scale, which determines the fast-start unit startup and shutdown schedule and output and flexibility reserve results of various flexible resources, the scenario coverage index is established to evaluate the schedulability of flexible resource scheduling results at real time scale. Furthermore, a high proportion renewable energy intra-day balance scheduling model with intra-day climbing scenario coverage is constructed. The results of case study illustrate the intra-day balance strategy proposed in this paper makes the reservation of flexibility resources measurable, improves the flexibility of the system, and reduces the probability of wind curtailment/load shedding issues because it takes into account the unit's climbing characteristics more accurately.
亢丽君, 王蓓蓓, 薛必克, 冯树海. 计及爬坡场景覆盖的高比例新能源电网平衡策略研究[J]. 电工技术学报, 2022, 37(13): 3275-3288.
Kang Lijun, Wang Beibei, Xue Bike, Feng Shuhai. Research on the Balance Strategy for Power Grid with High Proportion Renewable Energy Considering the Ramping Scenario Coverage. Transactions of China Electrotechnical Society, 2022, 37(13): 3275-3288.
[1] 娄素华, 胡斌, 吴耀武, 等. 碳交易环境下含大规模光伏电源的电力系统优化调度[J]. 电力系统自动化, 2014, 38(17): 91-97. Lou Suhua, Hu Bin, Wu Yaowu, et al.Optimal dispatch of power system integrated with large scale photovoltaic generation under carbon trading environment[J]. Automation of Electric Power Systems, 2014, 38(17): 91-97. [2] 白顺明, 陈磊, 姜飞, 等. 考虑风电最大化消纳的电力系统多目标优化[J]. 电气技术, 2020, 21(1): 7-11. Bai Shunming, Chen Lei, Jiang Fei, et al.Multi-objective optimal model for power system considering wind power maximum accommodation[J]. Electrical Engineering, 2020, 21(1): 7-11. [3] 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37(1): 9-19. Lu Zongxiang, Li HaiBo, Qiao Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37(1): 9-19. [4] California Independent System Operator. What the duck curve tells us about managing a green grid[EB/OL].(2016-11-11)[2021-01-30].https://www. caiso.com/documents/flexibleresourceshelprenewables_fastfacts.pdf. [5] 麻秀范, 王戈, 朱思嘉, 等. 计及风电消纳与发电集团利益的日前协调优化调度[J]. 电工技术学报, 2021, 36(3): 579-587. Ma Xiufan, Wang Ge, Zhu Sijia, et al.Coordinated day-ahead optimal dispatch considering wind power consumption and the benefits of power generation group[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 579-587. [6] 陈瑜玮, 王彬, 潘昭光, 等. 计及用户灵活性和热惯性的多能园区优化调度:研发及应用[J]. 电力系统自动化, 2020, 44(23): 29-37. Chen Yuwei, Wang Bin, Pan Zhaoguang, et al.Optimal dispatch for multi-energy park considering flexibility and thermal inertia of research, development and application[J]. Automation of Electric Power Systems, 2020, 44(23): 29-37. [7] Wang B, Hobbs B F.A flexible ramping product: can it help real-time dispatch markets approach the stochastic dispatch ideal?[J]. Electric Power Systems Research, 2014, 109: 128-140. [8] 边晓燕, 孙明琦, 董璐, 等. 计及灵活性聚合功率的源-荷分布式协调调度[J]. 电力系统自动化, 2021, 45(17): 89-98. Bian Xiaoyan, Sun Mingqi, Dong Lu, et al.Distributed source-load coordinated dispatching considering flexible aggregated power[J]. Automation of Electric Power Systems, 2021, 45(17): 89-98. [9] Ruiz P A, Philbrick C R, Zak E, et al.Uncertainty management in the unit commitment problem[J]. IEEE Transactions on Power Systems, 2009, 24(2): 642-651. [10] 王雪纯, 陈红坤, 陈磊. 提升区域综合能源系统运行灵活性的多主体互动决策模型[J]. 电工技术学报, 2021, 36(11): 2207-2219. Wang Xuechun, Chen Hongkun, Chen Lei.Multi-player interactive decision-making model for operational flexibility improvement of regional integrated energy system[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2207-2219. [11] Navid N, Rosenwald G.Ramp capability product design for MISO markets[R]. Market Development and Analysis,MISO, 2013. [12] California Independent System Operator. Flexible ramping product: revised draft final proposal[R]. California: CAISO, 2015. [13] Ela E, O'Malley M. Scheduling and pricing for expected ramp capability in real-time power markets[J]. IEEE Transactions on Power Systems, 2016, 31(3): 1681-1691. [14] 汪超群, 韦化, 吴思缘. 计及风电不确定性的随机安全约束机组组合[J]. 电网技术, 2017, 41(5): 1419-1427. Wang Chaoqun, Wei Hua, Wu Siyuan.Stochastic-security-constrained unit commitment considering uncertainty of wind power[J]. Power System Technology, 2017, 41(5): 1419-1427. [15] 苏承国, 申建建, 王沛霖, 等. 基于电源灵活性裕度的含风电电力系统多源协调调度方法[J]. 电力系统自动化, 2018, 42(17): 111-122. Su Chengguo, Shen Jianjian, Wang Peilin, et al.Coordinated dispatching method for wind-turbine-integrated power system with multi-type power sources based on power flexibility margin[J]. Automation of Electric Power Systems, 2018, 42(17): 111-122. [16] 王洪坤, 王守相, 潘志新, 等. 含高渗透分布式电源配电网灵活性提升优化调度方法[J]. 电力系统自动化, 2018, 42(15): 86-93. Wang Hongkun, Wang Shouxiang, Pan Zhixin, et al.Optimized dispatching method for flexibility improvement of distribution network with high-penetration distributed generation[J]. Automation of Electric Power Systems, 2018, 42(15): 86-93. [17] 杨龙杰, 李华强, 余雪莹, 等. 计及灵活性的孤岛型微电网多目标日前优化调度方法[J]. 电网技术, 2018, 42(5): 1432-1440. Yang Longjie, Li Huaqiang, Yu Xueying, et al.Multi-objective day-ahead optimal scheduling of isolated microgrid considering flexibility[J]. Power System Technology, 2018, 42(5): 1432-1440. [18] Wu Chenyu, Hug G, Soummya K.Risk-limiting economic dispatch for electricity markets with flexible ramping products[J]. IEEE Transactions on Power Systems, 2015, 3(31): 1990-2003. [19] 葛晓琳, 郝广东, 夏澍, 等. 高比例风电系统的优化调度方法[J]. 电网技术, 2019, 43(2): 390-399. Ge Xiaolin, Hao Guangdong, Xia Shu, et al.An optimal system scheduling method with high proportion of wind power[J]. Power System Technology, 2019, 43(2): 390-399. [20] 周博, 艾小猛, 方家琨, 等. 计及超分辨率风电出力不确定性的连续时间鲁棒机组组合[J]. 电工技术学报, 2021, 36(7): 1456-1467. Zhou Bo, Ai Xiaomeng, Fang Jiakun et al. Continuous-time modeling based robust unit commitment considering beyond-the-resolution wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1456-1467. [21] Ye Hongxing, Li Zuyi.Deliverable robust ramping products in real-time markets[J]. IEEE Transactions on Power Systems, 2018, 33(1): 5-18. [22] 马洪艳, 贠靖洋, 严正. 基于分布鲁棒优化的灵活爬坡备用调度方法[J]. 中国电机工程学报, 2020, 40(19): 6121-6132. Ma Hongyan, Yun Jingyang, Yan Zheng.Distributionally robust optimization based dispatch methodology of flexible ramping products[J]. Proceedings of the CSEE, 2020, 40(19): 6121-6132. [23] Ye Hongxing, Ge Yinyin, Shahidehpour M, et al.Uncertainty marginal price, transmission reserve, and day-ahead market clearing with robust unit commitment[J]. IEEE Transactions on Power Systems. 2017, 32(3): 1782-1795. [24] 王蓓蓓, 唐楠, 方鑫, 等. 大规模风电接入系统多时间尺度备用容量滚动修订模型[J]. 中国电机工程学报, 2017, 37(6): 1645-1657. Wang Beibei, Tang Nan, Fang Xin, et al.A multi time scales reserve rolling revision model of power system with large scale wind power[J]. Proceedings of the CSEE, 2017, 37(6): 1645-1657. [25] 吴界辰, 艾欣, 胡俊杰. 需求侧资源灵活性刻画及其在日前优化调度中的应用[J]. 电工技术学报, 2020, 35(9): 1973-1984. Wu Jiechen, Ai Xin, Hu Junjie.Methods for characterizing flexibilities from demand-side resources and their applications in the day-ahead optimal scheduling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1973-1984. [26] Subcommittee M.Ramp capability product design for MISO markets[R]. MISO, 2016. [27] 王蓓蓓, 刘小聪, 李扬. 面向大容量风电接入考虑用户侧互动的系统日前调度和运行模拟研究[J]. 中国电机工程学报, 2013, 33(22): 35-44. Wang Beibei, Liu Xiaocong, Li Yang.Day-ahead generation scheduling and operation simulation considering demand response in large-capacity wind power integrated systems[J]. Proceedings of the CSEE, 2013, 33(22): 35-44. [28] 刘兴宇, 温步瀛, 江岳文. 基于条件风险价值的含风电电力系统旋转备用效益研究[J]. 电工技术学报, 2017, 32(9): 169-178. Liu Xingyu, Wen Buying, Jiang Yuewen.Study on the benefit from spinning reserve in wind power integrated power system based on conditional value at risk[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 169-178.