Abstract:Preliminary study of vertical type of magnetic bearings is reported, which are composed of a superconducting stator with several yttrium-barium-copper-oxide(YBCO) quasi-single domains and a Nd-Fe-B permanent magnetic rotor. The rotor consists of a spindle, a permanent magnet and a flywheel. Driven by a variable-frequency three-phase induction motor, the maximum rotational speed of the rotor is up to 15 000r/min. The resonant frequency of the rotor system is observed near f0~25Hz with maximum radial vibration amplitude about ±170μm. The rotor motion is observed of stable between 35~200Hz, and is with maximum radial vibration amplitude about ±50μm. The results reveal that the losses in magnetic bearings are mainly induced from magnetic hysteresis loss and eddy-current loss. And the asymmetrical magnetic distribution as well as flux creeps may be responsible for the rotational loss.
邱傅杰, 徐克西, 盛培龙. 小型飞轮储能系统高温超导磁悬浮轴承[J]. 电工技术学报, 2014, 29(1): 181-186.
Qiu Fujie, Xu Kexi, Sheng Peilong. Small-Scale Flywheel Energy Storage System Equipped with High Temperature Superconducting Magnetic Bearing. Transactions of China Electrotechnical Society, 2014, 29(1): 181-186.
[1] Hull J R. Superconducting bearings[J]. Supercon- ductor Science and Technology, 2000, 13(2): R1-R15. [2] Wolsky A M. An overview of flywheel energy systems with HTS bearings[J]. Superconductor Science and Technology, 2002, 15(5): 836-837. [3] Strasik M, Johnson P E, Day A C, et al. Design, fabrication, and test of a 5-kWh/100-kW flywheel energy storage utilizing a high-temperature superconducting bearing[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2133-2137. [4] Strasik M, Hull J R, Mittleider J A, et al. An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearings[J]. Superconductor Science and Technology, 2010, 23(3): 034021. 1-034021. 5. [5] Werfel F N, Floegel Delor U, Rothfeld R, et al. Superconductor bearings, flywheels and transportation [J]. Superconductor Science and Technology, 2012, 25(1): 014007. 1-014007. 16. [6] 朱圣良, 袁春燕. 高温超导体磁悬浮轴承在低温液体泵中应用的可行性分析[J]. 低温与超导, 2011, 39(2): 25-29, 80. Zhu Shengliang, Yuan Chunyan. The feasibility analysis of high-temperature superconducting magnetic bearings’ application in cryogenic liquid pumps[J]. Superconductivity, 2011, 39(2): 25-29, 80. [7] Werfel F N, Floegel-Delor U, Rothfeld R, et al. Modelling and construction of a compact 500 kg HTS magnetic bearing[J]. Superconductor Science and Technology, 2005, 18(2): S19-S23. [8] Koshizuka N. R&D of superconducting bearing technologies for flywheel energy storage systems[J]. Physica C: Superconductivity, 2006, 445: 1103-1108. [9] Fang J R, Lin L Z, Yan L G et al. A new flywheel energy storage system using hybrid superconducting magnetic bearings[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1657-1660. [10] 汪黎莉. 超导磁悬浮飞轮储能系统的研究[D]. 武汉: 华中科技大学, 2007. [11] 李永亮, 方进, 郭明珠. 一种新型超导混合磁悬浮轴承的悬浮力特性分析[C]. 第九届全国超导学术研讨会, 西安, 2007: 221-225. [12] 邓自刚, 王家素, 王素玉, 等. 高温超导磁悬浮轴承研发现状[J]. 电工技术学报, 2009, 24(9): 1-8. Deng Zigang, Wang Jiasu, Wang Suyu, et al. Research and Development Status of High Temperature Superconducting Magnetic Bearings[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 1-8. [13] Tang J G, Liu G, Fang J C. Superconducting energy storage flywheel——an attractive technology for energy storage[J]. Journal of Shanghai Jiaotong University (Science), 2010, 15(1): 76-83. [14] Luo Y, Takagi T, Miya K. Reduction of levitation decay in high Tc superconducting magnetic bearings[J]. Cryogenics, 1999, 39(4): 331-338. [15] Strasik M, Hull J R, Johonson P E, et al. Performance of a conduction-cooled high-temperature supercon- ducting bearing[J]. Materials Science and Engineering: B, 2008, 151(3): 195-198. [16] Werfel F N, Flögel Delor U, Rothfeld R, et al. HTS magnetic bearings[J]. Physica C: Superconductivity, 2002, 372: 1482-1468.