1. School of Automation Engineering Shanghai University of Electric Power Shanghai 200090 China; 2. Guodian Nanjing Automation Co., Ltd Nanjing 210032 China
Abstract:This paper proposes a new method of soft-measurement model for transformer winding hot spot temperature based on particle swarm optimization-support vector regression (PSO-SVR) algorithm, and verifies its prediction effect by making a better use of the monitoring information of the transformer. In this method, taken use of an improved particle swarm optimization algorithm based on passive aggregation, the SVR model parameters of the regression of support vector machine are optimized and the optimal solution is found. The relevant factors of the transformer operation are fully considered in predicting the temperature of the winding hot spots. Compared with BP neural network and SVR method, the training and prediction results of 110kV transformer in a sample city show that the model has better prediction ability.
[1] IEEE Std C57.91—1995 IEEE guide for loading mineral-oil-immersed power transformers[S]. Piscata- way, NJ, USA: the Institute of Electrical and Elec- tronics Engineers, 1995. [2] 电力工业部. 中华人民共和国电力行业标准GB/T 15164—1994 油浸式电力变压器负载导则[S]. 北京: 中国标准出版社, 1994. [3] 罗嘉, 吴乐. 电站锅炉主要热工过程参数软测量技术研究进展[J]. 热力发电, 2015, 44(11): 1-9. Luo Jia, Wu Le.Research status of soft measurement technology of typical thermal parameters for utility boilers[J]. Thermal Power Generation, 2015, 44(11): 1-9. [4] 陈武. 电石炉三相电机消耗软测量技术开发与应用[D].杭州: 浙江工业大学, 2014. [5] 靖永志, 何飞, 张昆仑. 基于RBF神经网络和LS- SVM组合模型的磁浮车间隙传感器温度补偿[J]. 电工技术学报, 2016, 31(15): 73-87. Jing Yongzhi, He Fei, Zhang Kunlun.Temperature compensation of maglev train gap sensor based on RBF neural network and LS-SVM combined model[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 73-87. [6] Bedekar P P, Bhide S R, Kale V S.Fault section estimation in power system using Hebb’s rule and continuous genetic algorithm[J].International Journal of Electrical Power & Energy Systems, 2011, 33(3): 457-465. [7] 刘永欣, 师峰, 姜帅, 等. 智能变电站继电保护状态监测的一种模糊评估算法[J]. 电力系统保护与控制, 2014, 42(3): 37-41. Liu Yongxin, Shi Feng, Jiang Shuai, et al.A fuzzy evaluation algorithm for condition monitoring of smart substation relay protection[J]. Power System Protection and Control, 2014, 42(3): 37-41. [8] Suykens J A K, Vandewalie J. Least squares support vector machines classifiers[J]. Neural Network Letters, 1999, 9(3): 293-300. [9] 王磊, 曹现峰, 驼玮. 基于改进PSO优化神经网络的配电网故障选线研究[J]. 电气技术, 2016, 15(3): 30-36. Wang Lei, Cao Xianfeng, Tuo Wei.Research on fault line detection for distribution network based on improved PSO to optimize fuzzy neural network[J]. Electrical Engineering, 2016, 15(3): 30-36. [10] 尹玉娟, 王媚, 张金江, 等. 一种自主核优化的二值粒子群优化-多核学习支持向量机变压器故障诊断方法[J]. 电网技术, 2012, 36(7): 249-254. Yin Yujuan, Wang Mei, Zhang Jinjiang, et al.An autonomic kernel optimization method to diagnose transformer faults by multi-kernel learning support vector classifier based on binary particle swarm optimization[J]. Power System Technology, 2012, 36(7): 249-254. [11] 陈伟根, 滕黎, 刘军, 等. 基于遗传优化支持向量机的变压器绕组热点温度预测模型[J]. 电工技术学报, 2014, 29(1): 44-50. Chen Weigen, Teng Li, Liu Jun, et al.Transformer winding hot-spot temperature prediction model of support vector machine optimized by genetic algo- rithm[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 44-50. [12] Tang W H, Wu Q H.Condition monitoring and assessment of power transformers using com- putational intelligence[M]. New York: Springer London, 2011. [13] Tan W, Cao J, Li H.Algorithm of shot detection based on svm with modified kernel function[C]// International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 2009: 11-14. [14] 蒋延军, 倪远平. 基于粗糙集与支持向量机的变压器故障诊断法[J]. 高电压技术, 2008, 34(8): 1755-1760. Jiang Yanjun, Ni Yuanping.Fault diagnosis method of transformer based on rough set and support vector machine[J]. High Voltage Engineering, 2008, 34(8): 1755-1760. [15] Pierce L W.An investigation of the thermal performance of an oil filled transformer winding[J]. IEEE Transactions on Power Delivery, 1992, 7(3): 1347-1358. [16] 苑津莎, 张利伟, 李中, 等. 基于互补免疫算法的变压器故障诊断[J]. 电工技术学报, 2015, 30(24): 67-75. Yuan Jinsha, Zhang Liwei, Li Zhong, et al.Fault diagnosis of transformers based on complementary immune algorithm[J]. Transactions of China Elec- trotechnical Society, 2015, 30(24): 67-75. [17] Ebenezer M, Rajkumar M R, Nair P S C. Deter- mination of hot spot temperature of a single phase transformer subjected to harmonic pollution[J]. Journal of the Institution of Engineers (India), 2012, 93(3): 143-149. [18] 邱思语, 杨洪耕. 改进的加权支持向量机回归的谐波发射水平估计方法[J]. 电工技术学报, 2016, 31(5): 85-90. Qiu Siyu, Yang Honggeng.Assessment method of harmonic emission level based on the improved weighted support vector machine regression[J]. Transactions of China Electrotechnical Society, 2016, 31(5): 85-90. [19] 温玉锋. 材料实验数据的支持向量回归分析及应用[D]. 重庆: 重庆大学, 2009.