With the penetration of wind power in grid becoming higher and higher, especially large-scale wind park or wind groups access to transmission grid, the wind power variation has brought a lot of impacts on power scheduling, frequency stability and many other aspects. Since the generator and system frequency are fully decoupled by the full-size converter, the variable speed wind turbines have no inertia contribution to the power grid. Aiming at the problem, an energy storage device control strategy for inertia compensation of wind turbine is presented in this paper, based on the extended state observer (ESO). The ESO is adopted to estimate the differential signal of system frequency, which can estimate the effects of unknown measurement noise and external interference. It can solve the problems that come from interference of frequency change rate measurement. At the same time, the virtual inertia of the wind storage integrated system can be adjusted through variable parameter controls. To verify the control strategy, the simulation was done based on a 1.5MW gearless permanent magnet synchronous generator (PMSG) wind turbine and a 350kW battery storage system. The results showed that the strategy could compensate the virtual inertia of wind turbine without affecting the maximum power point tracking, and the output power of wind-energy storage system can response to the system frequency variation rapidly. Compared with proportional-differential (PD) virtual inertia control, the power grid frequency fluctuation can be better suppressed, and the frequency stability of the power system and the grid-friendship of wind turbine are improved.
王晓东, 李凯凯, 刘颖明, 程红辉. 基于状态观测器的风电机组单机储能系拟惯量控制[J]. 电工技术学报, 2018, 33(6): 1257-1264.
Wang Xiaodong, Li Kaikai, Liu Yingming, Cheng Honghui. Virtual Inertia Control of Energy Storage System in Wind Turbine Based on Extended State Observer. Transactions of China Electrotechnical Society, 2018, 33(6): 1257-1264.
[1] Morren J, Pierik J, Haan S W H D. Inertial response of variable speed wind turbines[J]. Electric Power Systems Research, 2006, 76(11): 980-987.
[2] 米增强, 刘力卿, 余洋, 等. 限电弃风工况下双馈风电机组有功及调频控制策略[J]. 电工技术学报, 2015, 30(15): 81-88.
Mi Zengqiang, Liu Liqing, Yu Yang, et al.The control strategy of active power and frequency regulation of DFIG under wind abandon condition[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 81-88.
[3] 倪琳娜, 罗吉, 王少荣. 含风电电力系统的频率控制[J]. 电工技术学报, 2011, 26(1): 235-241.
Ni Linna, Luo Ji, Wang Shaorong.Frequency control of power system with wind power integration[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 235-241.
[4] 唐西胜, 苗福丰, 齐智平, 等. 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34(25): 4304-4314.
Tang Xisheng, Miao Fufeng, Qi Zhiping, et al.Survey on frequency control of wind power[J]. Proceedings of the CSEE, 2014, 34(25): 4304-4314.
[5] 刘巨, 姚伟, 文劲宇, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646.
Liu Ju, Yao Wei, Wen Jinyu, et al.Prospect of technology for large-scale wind farm participating into power grid frequency regulation[J]. Power System Technology, 2014, 38(3): 638-646.
[6] 吴子双, 于继来, 彭喜云. 高风速段次优功率追踪方式的风电调频方法[J]. 电工技术学报, 2013, 28(5): 112-119.
Wu Zishuang, Yu Jilai, Peng Xiyun.DFIG’s frequency regulation method only for high wind speed with suboptimal power tracking[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 112-119.
[7] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232.
Zhang Guanfeng, Yang Junyou, Sun Feng, et al.Primary frequency regulation strategy of dfig based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232.
[8] 崔林, 文劲宇, 程时杰, 等. 超导磁储能系统抑制风力发电功率波动的研究[J]. 电力科学与技术学报, 2008, 23(1): 24-30.
Cui Lin, Wen Jinyu, Cheng Shijie, et al.Research on the application of superconducting magnetic energy storage unit to damp wind generation power fluctuating[J]. Journal of Electric Power Science & Technology, 2008, 23(1): 24-30.
[9] 柳伟, 顾伟, 孙蓉, 等. DFIG-SMES互补系统一次调频控制[J]. 电工技术学报, 2012, 27(9): 108-116.
Liu Wei, Gu Wei, Sun Rong, et al.Primary frequency control of doubly fed induction generator- superconducting magnetic energy storage comple- mentary system[J]. Transactions of China Electro- technical Society, 2012, 27(9): 108-116.
[10] 姬联涛, 张建成. 基于飞轮储能技术的可再生能源发电系统广义动量补偿控制研究[J]. 中国电机工程学报, 2010, 30(24): 101-106.
Ji Liantao, Zhang Jiancheng.Research on generalized momentum compensation method of flywheel energy storage in renewable energy power system[J]. Proceedings of the CSEE, 2010, 30(24): 101-106.
[11] 袁小明, 程时杰, 文劲宇. 储能技术在解决大规模风电并网问题中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 14-18.
Yuan Xiaoming, Cheng Shijie, Wen Jinyu.Prospects analysis of energy storage application in grid integr- ation of large-scale wind power[J]. Automation of Electric Power Systems, 2013, 37(1): 14-18.
[12] 刘世林, 文劲宇, 高文根, 等. 基于飞轮储能的并网风电功率综合调控策略[J]. 电力自动化设备, 2015, 35(12):34-39.
Liu Shilin, Wen Jinyu, Gao Wengen, et al.FESS- based comprehensive control of grid-connecting wind power[J]. Electric Power Automation Equipment, 2015, 35(12): 34-39.
[13] 胡国珍, 段善旭, 蔡涛. 基于液流电池储能的光伏发电系统容量配置及成本分析[J]. 电工技术学报, 2012, 27(5): 260-267.
Hu Guozhen, Duan Shanxu, Cai Tao.Sizing and cost analysis of photovoltaic generation system based on vanadium redox battery[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 260-267.
[14] 雷鸣宇, 杨子龙, 王一波, 等. 光/储混合系统中的储能控制技术研究[J]. 电工技术学报, 2016, 31(23): 86-92.
Lei Mingyu, Yang Zilong, Wang Yibo, et al.Study on control technology of energy storage station in photovoltaic/storage system[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 86-92.
[15] Conroy J F, Watson R.Frequency response capability of full converter wind turbine generators in com- parison to conventional generation[J]. IEEE Transa- ctions on Power Systems, 2008, 23(2): 649-656.
[16] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 中国电力防工业出版社, 2008.
[17] Chang Xiaoyong, Li Yongli, Zhang Weiya, et al.Active disturbance rejection control for a flywheel energy storage system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 991-1001.