Abstract:Compared with the two-level inverter, the three-level inverter provides more voltage vectors to the control system. Thus, the current can be controlled accurately, and the current ripple can be reduced effectively. But the three-level inverter has a problem about the neutral point voltage balance. That is, the motor cannot work properly if the neutral point voltage is not controlled. Moreover, the reduction of the switching frequency of the three-level inverter is required in medium-voltage drive field. To address this problem, a model predictive direct current control method considering neutral point voltage balancing and switching frequency reduction is proposed in this paper. This method can carry out predictive control to the neutral point voltage, and introduce the constraint of power semiconductor switching number to the cost function of the model predictive direct current control (MPDCC). Accordingly, the neutral point voltage can be controlled and the switching frequency of the inverter is reduced significantly by introducing the constraint of the power semiconductor switching number to the cost function of the MPDCC. The time delay arising from the computational time will cause the stator current to oscillate around its reference and increase the current and the torque ripples. The delay compensation method is then adopted. Both the simulation and experimental results verify the proposed method.
吴晓新, 宋文祥, 乐胜康, 阮毅. 异步电机模型预测三电平直接电流控制[J]. 电工技术学报, 2017, 32(18): 113-123.
Wu Xiaoxin, Song Wenxiang, Le Shengkang, Ruan Yi. Model Predictive Direct Current Control of Induction Machines Fed by a Three Level Inverter. Transactions of China Electrotechnical Society, 2017, 32(18): 113-123.
[1] Kouro S, Cortés P, Vargas R, et al. Model predictive control—a simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826-1838. [2] Tarisciotti L, Calzo G L, Gaeta A, et al. A distributed model predictive control strategy for back-to-back converters[J]. IEEE Transactions on Industrial Elec- tronics, 2016, 63(9): 5867-5878. [3] Rodriguez J, Kennel R M, Espinoza J R, et al. High-performance control strategies for electrical drives: An experimental assessment[J]. IEEE Transa- ctions on Industrial Electronics, 2012, 59(2): 812- 820. [4] Holtz J, Stadtfeld S. A predictive controller for the stator current vector of AC-machines fed from a switched voltage source[C]//IEEE International Power Electronics Conference, Tokyo, Japan, 1983: 1665- 1675. [5] Datta R, Ranganathan V T. A simple position- sensorless algorithm for rotor-side field-oriented control of wound-rotor induction machine[J]. IEEE Transactions on Industrial Electronics, 2001, 48(4): 786-793. [6] Takahashi I, Noguchi T. A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Transactions on Industrial Appli- cations, 1986, 22(5): 820-827. [7] Lascu C, Boldea I, Blaabjerg F. A modified direct torque control for induction motor sensorless drive[J]. IEEE Transactions on Industrial Applications, 2000, 36(1): 122-130. [8] Casadei D, Profumo F, Serra G, et al. FOC and DTC: two viable schemes for induction motors torque control[J]. Transactions on Power Electronics, 2002, 17(5): 779-787. [9] Sorchini Z, Krein P T. Formal derivation of direct torque control for induction machines[J]. Transa- ctions on Power Electronics, 2006, 21(5): 1428-1436. [10] 刘述喜, 王明渝. 基于快速空间矢量调制算法的三电平直接转矩预测控制系统[J]. 电工技术学报, 2009, 24(2): 35-41. Liu Shuxi, Wang Mingyu. Direct torque control system supplied by three-level inverter based on a fast SVPWM algorithm[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 35-41. [11] 张永昌, 杨海涛. 异步电机无速度传感器模型预测控制[J]. 中国电机工程学报, 2014, 34(15): 2422- 2429. Zhang Yongchang, Yang Haitao. Model predictive control for speed sensorless induction motor drive[J]. Proceeding of the CSEE, 2014, 34(15): 2422-2429. [12] 夏长亮, 张天一, 周湛清, 等. 结合开关表的三电平逆变器永磁同步电机模型预测直接转矩控制[J]. 电工技术学报, 2016, 31(20): 83-92. Xia Changliang, Zhang Tianyi, Zhou Zhanqing, et al. Model predictive torque control with switching table for neutral point clamped three-level inverter-fed permanent magnet synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(20): 83-92. [13] Geyer T, Papafotiou G, Morari M. Model predictive direct torque control—Part I: Concept, algorithm, and analysis[J]. IEEE Transactions on Industrial Elec- tronics, 2009, 56(6): 1894-1905. [14] Papafotiou G, Kley J, Papadopoulos K G, et al. Model predictive direct torque control—Part II: Implementation and experimental evaluation[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1906-1915. [15] Geyer T. Generalized model predictive direct torque control: Long prediction horizons and minimization of switching losses[C]//IEEE 48th Conference on Decision and Control, Shanghai, China, 2009: 6799- 6804. [16] 张杰, 柴建云, 孙旭东, 等. 双三相异步电机电流预测控制算法[J]. 电工技术学报, 2015, 30(9): 12-21. Zhang Jie, Chai Jianyun, Sun Xudong, et al. Predictive current control methods for dual three phase induction machine[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 12-21. [17] 张永昌, 杨海涛, 魏香龙. 基于快速矢量选择的永磁同步电机模型预测控制[J]. 电工技术学报, 2016, 31(6): 66-73. Zhang Yongchang, Yang Haitao, Wei Xianglong. Model predictive control of permanent magnet synchronous otors based on fast vector selection[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 66-73. [18] Vargas R, Rodríguez J, Ammann U, et al. Predictive current control of an induction machine fed by a matrix converter with reactive power control[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4362-4371. [19] Wang F, Mei X, Dai H, et al. Sensorless finite control set predictive current control for an induction machine[C]//IEEE International Conference on Information and Automation, Lijiang, China, 2015: 3106-3111. [20] 宋文祥, 阮智勇, 朱洪志, 等. 异步电机低开关频率的模型预测直接电流控制[J]. 上海大学学报: 自然科学版, 2013, 19(6): 647-653. Song Wenxiang, Ruan Zhiyong, Zhu Hongzhi, et al. Model predictive direct current control of induction motor at low switching frequency[J]. Journal of Shanghai University: Natural Science, 2013, 19(6): 647-653. [21] 杨勇, 赵方平, 阮毅, 等. 三相并网逆变器模型电流预测控制技术[J]. 电工技术学报, 2011, 26(6): 153-159. Yang Yong, Zhao Fangping, Ruan Yi, et al. Model current predictive control for three-phase grid- connected inverters[J]. Transactions of China Electro- technical Society, 2011, 26(6): 153-159. [22] 曹晓冬, 谭国俊, 王从刚, 等. 一种低开关频率PWM整流器的满意预测控制策略[J]. 中国电机工程学报, 2013, 33(27): 69-77. Cao Xiaodong, Tan Guojun, Wang Conggang, et al. A research on low switching frequency PWM rectifiers with satisfactory and model predictive control[J]. Proceeding of the CSEE, 2013, 33(27): 69-77. [23] Kukrer O. Discrete-time current control of voltage- fed three-phase PWM inverters[J]. IEEE Transactions on Industrial Electronics, 1996, 11(2): 260-269. [24] 龚博, 程善美, 秦怡. 基于载波的三电平中点电压平衡控制策略[J]. 电工技术学报, 2013, 28(6): 172-177. Gong Bo, Cheng Shanmei, Qin Yi. A three-level neutral point voltage balance control strategy based on carriers of SPWM[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 172-177. [25] 袁庆庆, 伍小杰, 戴鹏, 等. 低开关频率下三电平逆变器的中点电位控制[J]. 电机与控制学报, 2015, 19(9): 61-66. Yuan Qingqing, Wu Xiaojie, Dai Peng, et al. Neutral point potential control for three-level inverters with low switching frequency[J]. Electric Machines and Control, 2015, 19(9): 61-66.