Abstract:Compared to the traditional wireless power transfer (WPT) system, the wireless power transfer system based on envelope modulation has the advantages of simple structure and convenient control. However, the conditions such as the initial parameters and load variation will severely affect the oscillatory condition and the high frequency electric energy envelope quality of the wireless power transfer system based on envelope modulation. Thereby, the power transmission and the quality of load power would be affected inevitably. Based on ac impedance analysis method, zero current switching (ZCS) control technology was used to analyze the system state variables in time domain. The boundary for oscillatory condition and the zero-valley value of the energy envelope of system were obtained based on the discrete iteration method. Then, the operating boundary condition for wireless power transfer system based on envelope modulation was derived. Simulation and experimental results illustrate that the system always operates in resonant soft-switching state and keeps good quality of high frequency electric energy envelope within the scope of the boundary conditions. The results prove the validity of the theoretical analysis.
孙跃, 张路, 王智慧, 戴欣, 蒋成. 包络调制无线电能传输系统边界条件研究[J]. 电工技术学报, 2017, 32(18): 26-35.
Sun Yue, Zhang Lu, Wang Zhihui, Dai Xin, Jiang Cheng. Study on Boundary Condition of Wireless Power Transfer System Based on Envelope Modulation. Transactions of China Electrotechnical Society, 2017, 32(18): 26-35.
[1] Boys J T, Huang C Y, Covic G A. Single-phase unity power-factor inductive power transfer system[C]// 39th IEEE Annual Power Electronics Specialists Conference, Rhodes, Greece, 2008: 3701-3706. [2] Wu H H, Covic G, Boys J. A low energy storage IPT system using AC processing controllers[C]//6th IEEE Conference on Industrial Electronics and Appli- cations (ICIEA), New York, 2011: 351-356. [3] Lucia O, Carretero C, Burdi?o J M, et al. Multiple- output resonant matrix converter for multiple induction heaters[J]. IEEE Transactions on Industry Applications, 2012, 48(4): 1387-1396. [4] Li H L, Hu A, Covic G A. A direct AC-AC converter for inductive power-transfer systems[J]. IEEE Transa- ctions on Power Electronics, 2012, 27(2): 661-668. [5] 杨庆新, 章鹏程, 祝丽花, 等. 无线电能传输技术的关键基础与技术瓶颈问题[J]. 电工技术学报, 2015, 30(5): 1-8. Yang Qingxin, Zhang Pengcheng, Zhu Lihua, et al. Key fundamental problems and technical bottlenecks of the wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 1-8. [6] 苏玉刚, 谢诗云, 呼爱国, 等. LCL复合谐振型电场耦合式无线电能传输系统传输特性分析[J]. 电工技术学报, 2015, 30(19): 55-60. Su Yugang, Xie Shiyun, Hu Aiguo, et al. Trans- mission property analysis of electric-field coupled wireless power transfer system with LCL resonant network[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 55-60. [7] 张波, 张青. 两个负载接收线圈的谐振耦合无线输电系统特性分析[J]. 华南理工大学学报: 自然科学版, 2012, 40(10): 152-158. Zhang Bo, Zhang Qing. Characteristic analysis of magnetic resonant coupling-based wireless power transfer system with two receivers[J]. Journal of South China University of Technology: Natural Science Edition, 2012, 40(10): 152-158. [8] 李阳, 杨庆新, 闫卓, 等. 无线电能有效传输距离及其影响因素分析[J]. 电工技术学报, 2013, 28(1): 106-112. Li Yang, Yang Qingxin, Yan Zhuo, et al. Analysis on effective range of wireless power transfer and its impact factors[J]. Transactions of China Electro- technical Society, 2013, 28(1): 106-112. [9] 黄学良, 谭林林, 陈中, 等. 无线电能传输技术研究与应用综述[J]. 电工技术学报, 2013, 28(10): 1-11. Huang Xueliang, Tan Linlin, Chen Zhong, et al. Key fundamental problems and technical bottlenecks of wireless power transmission technology[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(10): 1-11. [10] 宋凯, 朱春波, 李阳, 等. 基于磁耦合谐振的自主无线充电机器人系统设计[J]. 电工技术学报, 2014, 29(9): 38-43. Song Kai, Zhu Chunbo, Li Yang, et al. Design and implementation of an autonomous wireless charging robot system using magnetically coupled resonance[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 38-43. [11] 王智慧, 孙跃, 苏玉刚, 等. 适用于无线电能传输系统的新型AC/DC/AC变换器[J]. 电工技术学报, 2010, 25(1): 84-89. Wang Zhihui, Sun Yue, Su Yugang, et al. A new type AC/DC/AC converter for contactless power transfer system[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 84-89. [12] 孟金岭, 赵伟, 林国营, 等. 双谐振注入混合型有源电力滤波器特性[J]. 电力系统保护与控制, 2016, 44(3): 32-38. Meng Jinling, Zhao Wei, Lin Guoying, et al. Characteristics of double resonance injection type hybrid active power filter[J]. Power System Protection and Control, 2016, 44(3): 32-38. [13] 苏匀, 李少华, 王秀丽, 等. 基于PWM交交变频器的分频风电系统研究[J]. 电力系统保护与控制, 2015, 43(13): 86-91. Su Yun, Li Shaohua, Wang Xiuli, et al. Research on fractional frequency wind power system based on PWM cycloconvertor[J]. Power System Protection and Control, 2015, 43(13): 86-91. [14] 朱虹, 潘小波, 陈玲, 等. 阻塞斩波三相交交变频电源的FPGA控制实现[J]. 电力系统保护与控制, 2014, 42(21): 116-123. Zhu Hong, Pan Xiaobo, Chen Ling, et al. Three-phase AC/AC frequency conversion power supply based on FPGA[J]. Power System Protection and Control, 2014, 42(21): 116-123. [15] 刘红伟, 张波, 黄润鸿, 等. 感应耦合与谐振耦合无线电能传输的比较研究[J]. 电气技术, 2015(6): 7-13. Liu Hongwei, Zhang Bo, Huang Runhong, et al. Comparative studies between inductive coupling and resonant coupling wireless power transmission[J]. Electrical Engineering, 2015(6): 7-13. [16] 王智慧. 基于包络线调制的非接触电能传输模式研究[D]. 重庆: 重庆大学, 2009. [17] 戴欣, 孙跃, 苏玉刚, 等. 非接触电能双向推送模式研究[J]. 中国电机工程学报, 2010, 30(18): 55-61. Dai Xin, Sun Yue, Su Yugang, et al. Study on contactless power bi-directional push mode[J]. Proceedings of the CSEE, 2010, 30(18): 55-61. [18] 夏晨阳. 感应耦合电能传输系统能效特性的分析与优化研究[D]. 重庆: 重庆大学, 2010.