Maximum Power Point Tracking Control of Wind Turbine Considering Temperature and Humidity
Su Xunwen1,2, Xu Dianguo2, Yang Rongfeng2, Yue Hongxuan3
1. Institute of Electrical and Control Engineering Heilongjiang University of Science and Technology Harbin 150027 China; 2. Institute of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China; 3. Xu Ji Group Corporation Xuchang 461000 China
Abstract:In order to study the effects of environmental factors on maximum power point tracking (MPPT) control of wind turbine, taken power signal feedback algorithm as an example, the mechanism of temperature and humidity affecting PSF algorithm is analyzed based on mathematical relationships of temperature and humidity with air density. Then this paper presents the method for the optimal power curve acquisition, the implementation process and flow chat of PSF algorithm considering temperature and humidity. The influence of loss of wind turbine is considered in this PSF algorithm. The models with doubly fed induction generator wind turbines based PSF algorithm are built on Matlab/Simulink platform. At last, the simulation results and field test in wind farm show that the PSF algorithm considering temperature and humidity can obtain high wind energy conversion efficiency.
苏勋文, 徐殿国, 杨荣峰, 岳红轩. 考虑温度和湿度的风机最大功率跟踪控制[J]. 电工技术学报, 2017, 32(13): 210-218.
Su Xunwen, Xu Dianguo, Yang Rongfeng, Yue Hongxuan. Maximum Power Point Tracking Control of Wind Turbine Considering Temperature and Humidity. Transactions of China Electrotechnical Society, 2017, 32(13): 210-218.
[1] Dipesh Kumar, Kalyan Chatterjee. A review of conventional and advanced MPPT algorithms for wind energy systems[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 957-970. [2] Wang Q, Chang L. An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1242-1249. [3] Kazmi S M R, Goto H, Guo H J, et al. A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 29-36. [4] 殷明慧, 张小莲, 邹云, 等. 跟踪区间优化的风力机最大功率点跟踪控制[J]. 电网技术, 2014, 38(8): 2180-2185. Yin Minghui, Zhang Xiaolian, Zou Yun, et al. Improved MPPT control of wind turbines based on optimization of tracking range[J]. Power System Technology, 2014, 38(8): 2180-2185. [5] 贾锋, 李征, 蔡旭. 提高大型风电机组恒转速段发电量的变桨策略[J]. 电工技术学报, 2017, 32(1): 58-68. Jia Feng, Li Zheng, Cai Xu. Advanced pitch control for improving power production for large scale wind energy conversion system under constant speed region[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 58-68. [6] 马祎炜, 俞俊杰, 吴国祥, 等. 双馈风力发电系统最大功率点跟踪控制策略[J]. 电工技术学报, 2009, 24(4): 202-208. Ma Yiwei, Yu Junjie, Wu Guoxiang, et al. MPPT control strategy for doubly-fed wind power gener- ation[J]. Transactions of China Electrotechnical Society, 2009, 24(4): 202-208. [7] 田兵, 赵克, 孙东阳, 等. 改进型变步长最大功率跟踪算法在风力发电系统中的应用[J]. 电工技术学报, 2016, 31(6): 226-233. Tian Bing, Zhao Ke, Sun Dongyang, et al. Promoted variable step maximum power point tracking algorithm used in the wind energy conversion system[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 226-233. [8] 张凤阁, 朱连成, 金石, 等. 开绕组无刷双馈风力发电机最大功率点跟踪直接转矩模糊控制研究[J]. 电工技术学报, 2016, 31(15): 43-53. Zhang Fengge, Zhu Liancheng, Jin Shi, et al. Research on the maximum power point tracking of brushless doubly-fed wind power generator with open winding direct torque fuzzy control strategy[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 43-53. [9] 李咸善, 徐浩, 杜于龙. 采用叶尖速比法和爬山搜索法相结合的风力发电系统最大功率点跟踪研究[J]. 电力系统保护与控制, 2015, 43(13): 66-71. Li Xianshan, Xu Hao, Du Yulong. Maximum power tracking of wind power generation system using the combination of tip speed ratio method and climbing search method[J]. Power System Protection and Control, 2015, 43(13): 66-71. [10] 刘丹, 李强, 冯承超. 小型直驱式永磁同步风力发电机快速最大功率追踪仿真研究[J]. 电力系统保护与控制, 2016, 44(5): 141-145. Liu Dan, Li Qiang, Feng Chengchao. A simulation study of small direct drive type permanent magnet synchronous generator fast maximum power tracking[J]. Power System Protection and Control, 2016, 44(5): 141-145. [11] 吴爱华, 赵不贿, 茅靖峰, 等. 基于转矩观测器的垂直轴风力发电最大功率跟踪反演控制[J]. 电力系统保护与控制, 2017, 45(2): 7-13. Wu Aihua, Zhao Buhui, Mao Jingfeng, et al. Back-stepping control for vertical axis wind power generation system maximum power point tracking based on torque observer[J]. Power System Pro- tection and Control, 2017, 45(2): 7-13. [12] 瞿萍, 朱明, 魏明星, 等. 垂直轴直驱永磁同步风力发电机的滑模控制设计[J]. 电气技术, 2014, 15(6): 5-9. Qu Ping, Zhu Ming, Wei Mingxing, et al. Sliding mode controller for vertical axis permanent magnet direct drive wind power generation system[J]. Electrical Engineering, 2014, 15(6): 5-9. [13] 张小莲, 李群, 殷明慧, 等. 一种引入停止机制的改进爬山算法[J]. 中国电机工程学报, 2012, 32(14): 128-134. Zhang Xiaolian, Li Qun, Yin Minghui, et al. An improved hill-climbing searching method based on halt mechanism[J]. Proceedings of the CSEE, 2012, 32(14): 128-134. [14] 陈家伟, 陈杰, 龚春英. 变速风力发电机组恒带宽最大功率跟踪控制策略[J]. 中国电机工程学报, 2012, 32(27): 32-38. Chen Jiawei, Chen Jie, Gong Chunying. A constant- bandwidth MPPT strategy for variable-speed WECS[J]. Proceedings of the CSEE, 2012, 32(27): 32-38. [15] 张小莲, 殷明慧, 周连俊, 等. 风电机组最大功率点跟踪控制的影响因素分析[J]. 电力系统自动化, 2013, 37(22): 15-21. Zhang Xiaolian, Yin Minghui, Zhou Lianjun, et al. Analysis on factors affecting performance of MPPT control[J]. Automation of Electric Power Systems, 2013, 37(22): 15-21. [16] 楚峥, 李楠. 自适应空气密度变化的风电机组最优转矩控制[J]. 上海电气技术, 2014, 7(2): 41-44. Chu Zheng, Li Nan. Air density self-adapting wind turbine optimal torque control[J]. Journal of Shanghai Electric Technology, 2014, 7(2): 41-44. [17] 胡家兵, 贺益康, 刘其辉. 基于最佳功率给定的最大风能追踪控制策略[J]. 电力系统自动化, 2005, 29(24): 32-38. Hu Jiabing, He Yikang, Liu Qihui. Optimized active power reference based maximum wind energy tracking control strategy[J]. Automation of Electric Power Systems, 2005, 29(24): 32-38. [18] De Kooning J D M, Vandoorn T L, de Vyver J V, et al. Displacement of the maximum power point caused by losses in wind turbine systems[J]. Renewable Energy, 2016, 85: 273-280.