Study on Control Technology of Energy Storage Station in Photovoltaic/Storage System
Lei Mingyu1,2, Yang Zilong1, Wang Yibo1, Xu Honghua1
1.Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2.University of Chinese Academy of Sciences Beijing 100190 China
Abstract:When the penetration of photovoltaic system is high in a distribution network, energy storage system is available to reduce the impact on grid caused by PV power fluctuation.In order to smooth PV power,this paper proposes a control method of energy storage system based on the short-time photovoltaic power prediction technology and low-pass filtering principle.By using this method,the delay caused by traditional low pass filter method is eliminated and the influence of photovoltaic power prediction error on control effect is also reduced.As a result,the control effect is improved and the capacity of energy storage system is limited.The simulation results show that the strategy can effectively reduce the fluctuations of PV power,and prevent storage system to be over-charged or over-discharged.
雷鸣宇,杨子龙,王一波,许洪华. 光/储混合系统中的储能控制技术研究[J]. 电工技术学报, 2016, 31(23): 86-92.
Lei Mingyu, Yang Zilong, Wang Yibo, Xu Honghua. Study on Control Technology of Energy Storage Station in Photovoltaic/Storage System. Transactions of China Electrotechnical Society, 2016, 31(23): 86-92.
[1] Chiang S J,Chang K T,Yen C Y.Residential photovoltaic energy storage system[J].IEEE Transactions on Industry Applications,1998,45(3):385-394. [2] Mairajuddin M,Shameem A L,Shiekh J I,et al.Super-capacitor based energy storage system for improved load frequency control[J].Electric Power Systems Research,2009,79(1):226-233. [3] Katiraei F,Iravani M R.Power management strategies for a micro-grid with multiple distributed generation units[J].IEEE Transactions on Power Systems,2006,21(4):1821-1831. [4] Duryea S,Islam S,Lawrance W.A battery management system for stand-alone photovoltaic energy systems[J].IEEE Transactions on Industry Applications,2001,7(3):37-41. [5] Sheikh M R I,Eva F,Motin M A,et al.Wind generator output power smoothing and terminal voltage regulation by using STATCOM/SMES[C]//2nd International Conference on the Developments in Renewable Energy Technology (ICDRET),Dhaka,Bengal,2012:1-5. [6] 丁明,林根德,陈自年,等.一种适用于混合储能系统的控制策略[J].中国电机工程学报,2012,32(7):1-6. Ding Ming,Lin Gende,Chen Zinian,et al.A control strategy for hybrid energy storage systems[J].Proceedings of the CSEE,2012,32(7):1-6. [7] Jiang Quanyuan,Wang Haijiao.Two-time-scale coordination control for a battery energy storage system to mitigate wind power fluctuations[J].IEEE Transactions on Energy Conversion,2013,28(1):52-61. [8] 宇航.利用储能系统平抑风电功率波动的仿真研究[D].吉林:东北电力大学,2008. [9] 李蓓,郭剑波.平抑风电功率的电池储能系统控制策略[J].电网技术,2012,36(8):39-43. Li Bei,Guo Jianbo.Control strategy for battery energy storage system to level wind power output[J].Power System Technology,2012,36(8):39-43. [10]吴振威,蒋小平,马会萌,等.用于混合储能平抑光伏波动的小波包-模糊控制[J].中国电机工程学报,2014,34(3):317-324. Wu Zhenwei,Jiang Xiaoping,Ma Huimeng,et al.Wavelet packet-fuzzy control of hybrid energy storage systems for PV power smoothing[J].Proceedings of the CSEE,2014,34(3):317-324. [11]林少伯,韩民晓,赵国鹏,等.基于随机预测误差的分布式光伏配网储能系统容量配置方法[J].中国电机工程学报,2013,33(4):25-33. Lin Shaobo,Han Minxiao,Zhao Guopeng,et al.Capacity allocation of energy storage in distributed photovoltaic power system based on stochastic prediction error[J].Proceedings of the CSEE,2013,33(4):25-33. [12]Chiang S J,Chang K T,Yen C Y.Residential photovoltaic energy storage system[J].IEEE Transactions on Industry Applications,1998,45(3):385-394. [13]Jiang Zhenhua,Yu Xunwei.Modeling and control of an integrated wind power generation and energy storage system[C]//Power & Energy Society General Meeting,Alberta,Canada,2009:1-8. [14]Wang Jiayuan,Sun Zechang,Wei Xuezhe.Performance and characteristic research in LiFePO4 battery for electric vehicle applications[C]//Vehicle Power and Propulsion Conference,Michigan,USA,2009:1657-1661. [15]Peng Simin,Cao Yufeng,Cai Xu.Control of large scale battery energy storage system interface to microgrid[J].Automation of Electric Power Systems,2011,35(16):38-43.