Abstract:Due to the advantages of modularity, scalability and redundancy, modular multilevel converter (MMC) has been widely used in the high power applications such as HVDC transmission. However, the reliability becomes one of the most important challenges for MMC which is composed of a large number of power electronics components. To increase the reliability of MMC, the reserved sub-modules (SMs) are often utilized to realize the fault-tolerant operation. Considering MMC with the reserved SMs, the SM failures will cause the asymmetrical operation of the upper and the lower arms. Through detailed analysis in this paper, it can be concluded that there are not only even-order harmonics, but also odd-order harmonics in the circulating current under asymmetrical operation conditions. Accordingly, an improved repetitive controller of the circulating current is proposed in this paper, which guarantees not only the fault-tolerant operation of MMC, but also the suppression of all the harmonics in the circulating current. Whether MMC operates in the symmetrical or the asymmetrical condition, the repetitive controller can both work. Therefore, there is no need to switch controllers after the fault, which reduces the complexity of the fault-tolerant control. Experiments based on a downscaled single-phase MMC prototype have verified the effectiveness of the proposed control strategy.
李凯, 赵争鸣, 袁立强. 模块化多电平变换器上、下桥臂不对称运行环流重复控制[J]. 电工技术学报, 2016, 31(20): 122-129.
Li Kai, Zhao Zhengming, Yuan Liqiang. Repetitive Control of Circulating Current in MMC with Asymmetrical Operation of Upper and Lower Arms. Transactions of China Electrotechnical Society, 2016, 31(20): 122-129.
[1] Marquardt R. Stromrichterschaltungen mit verteilten energiespeichern: German patent DE, 20122 923U1[P]. 2001. [2] Debnath S, Qin J, Bahrani B, et al. Operation, control, and applications of the modular multilevel converter: a review[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 37-53. [3] Deng F, Chen Z, Khan M R, et al. Fault detection and localization method for modular multilevel conver- ters[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2721-2732. [4] Li B, Zhang Y, Yang R, et al. Seamless transition control for modular multilevel converters when inserting a cold-reserve redundant submodule[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4052-4057. [5] Gum T S, Hee-Jin L, Tae S N, et al. Design and control of a modular multilevel HVDC converter with redundant power modules for noninterruptible energy transfer[J]. IEEE Transactions on Power Delivery, 2012, 27(3): 1611-1619. [6] Hu P, Jiang D, Zhou Y, et al. Energy-balancing control strategy for modular multilevel converters under submodule fault conditions[J]. IEEE Tran- sactions on Power Electronics, 2014, 29(9): 5021- 5030. [7] Liu G, Xu Z, Xue Y, et al. Optimized control strategy based on dynamic redundancy for the modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 339-348. [8] 武文, 吴学智, 荆龙, 等. 模块化多电平变流器子模块故障容错控制策略[J]. 电网技术, 2016, 40(1): 11-18. Wu Wen, Wu Xuezhi, Jing Long, et al. A fault- tolerated control strategy for sub-module faults of modular multilevel converters[J]. Power System Technology, 2016, 40(1): 11-18. [9] 江丽丽, 马文忠, 李林欢, 等. 模块化多电平换流器的容错控制策略[J]. 电网技术, 2014, 38(9): 2497-2503. Jiang Lili, Ma Wenzhong, Li Linhuan, et al. A fault- tolerant control strategy of modular multi-level converters[J]. Power System Technology, 2014, 38(9): 2497-2503. [10] 马文忠, 江丽丽, 李林欢, 等. 模块化多电平变换器容错运行环流抑制策略[J]. 高电压技术, 2014, 40(11): 3513-3518. Ma Wenzhong, Jiang Lili, Li Linhuan, et al. Circulating current suppressing strategy of modular multilevel converter in fault-tolerant control mode[J]. High Voltage Engineering, 2014, 40(11): 3513- 3518. [11] 李探, 赵成勇. MMC子模块故障下桥臂不对称运行特性分析与故障容错控制[J]. 中国电机工程学报, 2015, 35(15): 3921-3928. Li Tan, Zhao Chengyong. Operation characteristics of the MMC with asymmetrical arms under sub- module faults and the fault-tolerant control[J]. Proceedings of the CSEE, 2015, 35(15): 3921-3928. [12] Hagiwara M, Maeda R, Akagi H. Control and analysis of the modular multilevel cascade converter based on double-star chopper-cells (MMCC- DSCC)[J]. IEEE Transactions on Power Electronics, 2011, 26(6): 1649-1658. [13] Song Q, Liu W, Li X, et al. A steady-state analysis method for a modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2013, 28(8): 3702-3713. [14] Zhang M, Huang L, Yao W, et al. Circulating harmonic current elimination of a CPS-PWM-based modular multilevel converter with a plug-in repetitive controller[J]. IEEE Transactions on Power Elec- tronics, 2014, 29(4): 2083-2097. [15] Li B, Xu D, Xu D. Circulating current harmonics suppression for modular multilevel converters based on repetitive control[J]. Journal of Power Electronics, 2014, 14(6): 1100-1108. [16] Shao S, Wheeler P W, Clare J C, et al. Fault detection for modular multilevel converters based on sliding mode observer[J]. IEEE Transactions on Power Elec- tronics, 2013, 28(11): 4867-4872. [17] 李探, 赵成勇, 李路遥, 等. MMC-HVDC子模块故障诊断与就地保护策略[J]. 中国电机工程学报, 2014, 34(10): 1641-1649. Li Tan, Zhao Chengyong, Li Luyao, et al. Sub- module fault diagnosis and the local protection scheme for MMC-HVDC system[J]. Proceedings of the CSEE, 2014, 34(10): 1641-1649.