Simulation and Analysis on the Operational Characteristics of the Power Transmission Lines with a 110kV/3kA High Temperature Superconducting Cable in a Meshed Grid
Abstract:With the growing requirements for the electricity, the security of grid and the environmental protection, the traditional transmission system can hardly meet the needs of urban power supply. The high temperature superconducting (HTS) cable has a possibility to solve these problems, because it can be applied to the extremely small areas or the places where the overhead lines fail to be built due to the security and environmental concerns. In this paper, a simulation model of 110kV/3kA cold dielectric HTS cable is built in PSCAD/EMTDC based on the critical characteristics of the HTS cable, where the quench effects are calculated by Matlab. An external short-circuit fault is simulated in a 110kV HTS transmission line. And then the power flow distributions with and without HTS cable are compared. The results show that the HTS cable has greater short-circuit capacity, and is beneficial to the power grid voltage stability and regulation.
基金资助:国家自然科学青年基金(51207146),国家电网公司科技项目(SGKJKJ[2010]374号、DG71-11-009和DG71-13-004)和The Royal Academy of Engineering International Exchange Scheme, UK(5502)资助
陈晓宇, 诸嘉慧, 方进, 丘明, 栗会峰. 110kV/3kA高温超导电缆输电网络接入运行特性仿真计算与分析[J]. 电工技术学报, 2016, 31(16): 7-15.
Chen Xiaoyu, Zhu Jiahui, Fang Jin, Qiu Ming, Li Huifeng. Simulation and Analysis on the Operational Characteristics of the Power Transmission Lines with a 110kV/3kA High Temperature Superconducting Cable in a Meshed Grid. Transactions of China Electrotechnical Society, 2016, 31(16): 7-15.
[1] 林良真. 我国超导技术研究进展及展望[J]. 电工技术学报, 2005, 20(1): 1-7. Lin Liangzhen. Recent advances and prospect in the development of superconducting technology in China[J]. Transactions of China Electrotechnical Society, 2005, 20(1): 1-7. [2] 滕玉平, 戴少涛, 魏周荣, 等. ITER装置超导磁体线圈导体用超导电缆的绞制[J]. 电工技术学报, 2013, 28(4): 7-12. Teng Yuping, Dai Shaotao, Wei Zhourong, et al. Cabling for the superconducting cable of magnet coils for ITER[J]. Transactions of China Electro- technical Society, 2013, 28(4): 7-12. [3] 张建华, 曾博, 张玉莹, 等. 主动配电网规划关键问题与研究展望[J]. 电工技术学报, 2014, 29(2): 13-23. Zhang Jianhua, Zeng Bo, Zhang Yuying, et al. Key issues and research prospects of active distribution network planning[J]. Transactions of China Electro- technical Society, 2014, 29(2): 13-23. [4] 高志远, 姚建国, 曹阳, 等. 智能电网发展机理研究初探[J]. 电力系统保护与控制, 2014, 42(5): 116-121. Gao Zhiyuan, Yao Jianguo, Cao Yang, et al. Primary study on the development mechanism of smart grid[J]. Power System Protection and Control, 2014, 42(5): 116-121. [5] Demko J A, Sauers I, James D R, et al. Triaxial HTS cable for the AEP Bixby project[J]. IEEE Transa- ctions on Applied Superconductivity, 2007, 17(2): 2047-2050. [6] Yumura H, Ashibe Y, Itoh H, et al. Phase Ⅱ of the albany HTS cable project[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1698-1701. [7] Maguire J F. Progress and status of a 2G HTS power cable to be installed in the long island power autho- rity (LIPA) grid[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 961-966. [8] Masuda T, Yumura H, Ohya M. Test results of a 30m HTS cable for Yokohama project[J]. IEEE Transa- ctions on Applied Superconductivity, 2011, 21(3): 1030-1033. [9] Sohn S H, Lim J H, Yim S W, et al. The results of installation and preliminary test of 22.9kV, 50MV·A, 100m class HTS power cable system at KEPCO[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2043-2046. [10] Sohn S H, Lim J H, Yang B M, et al. Design and development of 500m long HTS cable system in the KEPCO power grid, Korea[J]. Physica C: Super- conductivity, 2010, 470(20): 1567-1571. [11] Zhu J H, Bao X Z, Guo L J, et al. Optimal design of current sharing in transmission conductors of a 110kV/3kA cold dielectric superconducting cable consisted of YBCO tapes[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5402505. [12] Kim J H, Park M, Ali M H, et al. Investigation of the over current characteristics of HTS tapes considering the application for HTS power devices[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 1139-1142. [13] Yasuda M, Guan Y, Kawahara T, et al. Estimation of over current performance in YBCO superconducting thin films for fault-current limiter[J]. IEEE Transa- ctions on Applied Superconductivity, 2011, 21(3): 1319-1322. [14] Duron J, Grilli F, Dutoit B, et al. Modeling the E-J relation of high-TC superconductors in an arbitrary current range[J]. Physica C: Superconductivity, 2004, 401(1): 231-235. [15] Duron J, Grilli F, Antognazza L, et al. Finite-element modeling of YBCO fault current limiter with temperature dependent parameters[J]. Super- conductor Science and Technology, 2007, 20(4): 338-344. [16] Hu N, Toda M, Ozcivan A N, et al. Fault current analysis in a triaxial HTS cable[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1288-1291. [17] 吕安强, 李永倩, 李静, 等. 光电复合海缆中光纤与导体温度关系的有限元分析方法[J]. 电工技术 学报, 2014, 29(4): 91-96. Lü Anqiang, Li Yongqian, Li Jing, et al. Finite element analysis method for temperature relationship between conductor and optical fiber in optic-electric composite submarine cable[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 91-96. [18] 刘瑞芳, 马菁. 超导电力装置电流引线迫流冷却传热分析[J]. 电工技术学报, 2014, 29(1): 196-201. Liu Ruifang, Ma Jing. Heat transfer analysis of force-cooled current leads in superconducting electric equipment[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 196-201. [19] 周义刚, 张正臣, 王银顺, 等. YBCO超导带材交流过流冲击下的稳定性[J]. 稀有金属材料与工程, 2008, 37(A04): 285-288. Zhou Yigang, Zhang Zhengchen, Wang Yinshun, et al. Stability of YBCO HTS tape with AC over-current at power frequency[J]. Rare Metal Materials Engin- eering, 2008, 37(A04): 285-288. [20] Wang X, Ueda H, Ishiyama A, et al. Thermal characteristics of 275kV/3kA class YBCO power cable[J]. IEEE Transactions on Applied Super- conductivity, 2010, 20(3): 1268-1271. [21] Bang J H, Je H H, Kim J H, et al. Critical current, critical temperature and magnetic field based EMTDC model component for HTS power cable[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1726-1729. [22] Ha S K, Kim S K, Kim J G, et al. Transient characteristic analysis of a triaxial HTS power cable using PSCAD/EMTDC[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5400104. [23] 彭卉, 邹舒, 付永生, 等. 冲击负荷接入电网的电能质量分析与治理方案研究[J]. 电力系统保护与控制, 2014, 42(1): 54-61. Peng Hui, Zou Shu, Fu Yongsheng, et al. Research of the power quality problem and treatment scheme for impact loads connected into Chongqing power system[J]. Power System Protection and Control, 2014, 42(1): 54-61. [24] 任安林, 田密, 字美荣, 等. 普吉变电站超导电力设备运行分析[J]. 电工技术学报, 2012, 27(10): 86-90. Ren Anlin, Tian Mi, Zi Meirong, et al. The operation research and analysis of superconductor power equipment at Yunnan Puji substation[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 86-90. [25] 王展, 吴威, 张文嘉, 等. 超导磁储能装置对输电线路多边形特性距离保护的影响分析[J]. 电力系统保护与控制, 2014, 42(6): 8-13. Wang Zhan, Wu Wei, Zhang Wenjia, et al. Effects analysis of SMES device on polygon distance relay of transmission line[J]. Power System Protection and Control, 2014, 42(6): 8-13.