Method Based on Compressed Sensing for Compression and Reconstruction of Power Quality Signals with Disturbances
Chen Lei1, 2, Zheng Dezhong1, Liao Wenzhe3
1. Key Laboratory of Measurement Technology and Instrumentation of Hebei Province Yanshan University Qinhuangdao 066004 China; 2. Northeast Petroleum University at Qinhuangdao Qinhuangdao 066004 China; 3. College of Control Science and Engineering Hebei University of Technology Tianjin 300130 China
Abstract:A method based on compressed sensing theory is proposed to realize the compressive sampling and nonlinear recovery. The compressibility and the sparsity of the disturbed power quality signals are analyzed, and the existing iterative greedy pursuit recovery algorithms are reviewed. Combined with the advantages of two typical algorithms SP and SAMP, an improved method named BSMP is proposed. Then the reconstruction performance of several typical greedy pursuit recovery algorithms are simulated and analyzed, using the power quality signals with steady or transient disturbances such as harmonics, interharmonics, voltage swell and sag, etc. Results verify the feasibility of the BSMP in recovering the power quality signals with mixed or single disturbances. Compared with the existing greedy algorithms, BSMP algorithm does not require sparsity level as prior information, and can realize the successful reconstruction absolutely with faster speed and higher compression ratio.
陈雷, 郑德忠, 廖文喆. 基于压缩感知的含扰动电能质量信号压缩重构方法[J]. 电工技术学报, 2016, 31(8): 163-171.
Chen Lei, Zheng Dezhong, Liao Wenzhe. Method Based on Compressed Sensing for Compression and Reconstruction of Power Quality Signals with Disturbances. Transactions of China Electrotechnical Society, 2016, 31(8): 163-171.
[1] Donoho D. Compressed sensing[J]. IEEE Transa- ctions on Information Theory, 2006, 52(4): 1289 1306. [2] Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. [3] 焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651-1662. Jiao Licheng, Yang Shuyuan, Liu Fang, et al. Development and prospect of compressive sensing[J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662. [4] 李树涛, 魏丹. 压缩传感综述[J]. 自动化学报, 2009, 35(11): 1369-1377. Li Shutao, Wei Dan. A survey on compressive sen- sing[J]. Acta Automatic Sinica, 2009, 35(11): 1369- 1377. [5] IEEE Power & Energy Society. IEEE standard 1159— 2009: IEEE recommended practice for monitoring electric power quality[S]. 2009. [6] 程浩忠, 吕干云, 周荔丹. 电能质量监测与分析[M]. 北京: 科学出版社, 2012. [7] 欧阳森, 宋政湘, 陈德桂, 等. 基于小波原理的电能质量检测数据实时压缩方法[J]. 电网技术, 2003, 27(2): 37-40. Ouyang Sen, Song Zhengxiang, Chen Degui, et al. A wavelet theory based real-time data compression method for power quality detection[J]. Power System Technology, 2003, 27(2): 37-40. [8] 郭彬彬, 黄纯. 基于小波包变换的电能质量扰动数据压缩[J]. 电力自动化设备, 2005, 25(11): 34-37. Guo Binbin, Huang Chun. Power quality disturbance data compression based on wavelet packet trans- form[J]. Electric Power Automation Equipment, 2005, 25(11): 34-37. [9] 王成山, 王继东. 基于能量阈值和自适应算术编码的数据压缩方法[J]. 电力系统自动化, 2004, 28(24): 56-60. Wang Chengshan, Wang Jidong. Data compression method based on energy threshold and adaptive arith- metic encoding[J]. Automation of Electric Power Systems, 2004, 28(24): 56-60. [10] 朱永利, 翟学明, 姜小磊. 绝缘子泄漏电流的自适应SPIHT数据压缩[J]. 电工技术学报, 2011, 26(12):190-196. Zhu Yongli, Zhai Xueming, Jiang Xiaolei. Adaptive SPIHT algorithm for data compression of insulator leakage currents[J]. Transactions of China Electro- technical Society, 2011, 26(12): 190-196. [11] 鲍文, 周瑞, 刘金福. 基于二维提升小波的火电厂周期性数据压缩算法[J].中国电机工程学报, 2007, 27(29): 96-101. Bao Wen, Zhou Rui, Liu Jinfu. A periodical data compression method based on 2-D lifting wavelet transform in thermal power plant[J]. Proceedings of the CSEE, 2007, 27(29): 96-101. [12] 刘毅, 周雒维, 冯浩. 电能质量监测网录波数据压缩方法[J]. 电网技术, 2010, 34(4): 199-203. Liu Yi, Zhou Luowei, Feng Hao. Method for compressing recorded data from power quality monitoring network[J]. Power System Technology, 2010, 34(4): 199-203. [13] 黄南天, 徐殿国, 刘晓胜, 等. 基于模式相似性测度的电能质量数据压缩方法[J]. 电工技术学报, 2011, 26(10): 39-46, 61. Huang Nantian, Xu Dianguo, Liu Xiaosheng, et al. Power quality data compression based on pattern similarity measurement[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 39-46, 61. [14] Cohen A, Dahmen W, DeVore R. Compressed sensing and best k -term approximation[J]. Journal of the American Mathematical Society, 2009, 22(1): 211-231. [15] Boufounos P, Kutyniok G, Rauhut H. Sparse recovery from combined fusion frame measurements[J]. IEEE Transactions on Information Theory, 2011, 57(6): 3864-3876. [16] Candès E. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346 (9-10): 589-592. [17] Donoho D L. For most large underdetermined systems of linear equations the minimal l 1 -norm solution is also the sparsest solution[J]. Communi- cations on Pure and Applied Mathematics, 2006, 59(6): 797- 829. [18] 杨真真, 杨震, 孙林慧. 信号压缩重构的正交匹配追踪类算法综述[J]. 信号处理, 2013, 29(4): 486-496. Yang Zhenzhen, Yang Zhen, Sun Linhui. A survey on orthogonal matching pursuit type algorithms for signal compression and reconstruction[J]. Signal Processing, 2013, 29(4): 486-496. [19] Dai W, Milenkovic O. Subspace pursuit for com- pressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. [20] Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Communications of the ACM, 2010, 53(12): 93-100. [21] Do T T, Gan L, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, 2008, 10: 581-587. [22] Maleki A, Donoho D L. Optimally tuned iterative reconstruction algorithms for compressed sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 4(2): 330-341.