Electric Public Bus Load Model Based on Improved Kernel Density Estimation and Latin Hypercube Sampling
Miao Pengbin1, Yu Juan1, Shi Lefeng2, Liu Guoping2, Liang Ming1, Li Wenyuan1, Ren Zhouyang1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Chongqing Electric Power Research Institute Chongqing 401123 China
Abstract:To build a more precise charging load model of electric public buses, the probability distribution and sampling method of charging state and charging start time are studied. Firstly, an adaptive kernel density estimation with boundary Kernel algorithm is proposed to build probability distribution models. The proposed algorithm does not require any assumptions about the probability distribution, and can also solve the problems of boundary bias and lacking of local adaptability, which improves the precision and adaptability of probability distribution. Secondly, Latin hypercube sampling with cubic spline interpolation algorithm is proposed to figure out the inverse cumulative distribution function of probability distribution. The proposed algorithm has high precision and sampling efficiency. Finally, based on these two algorithms, electric public bus charging load model is set up. The simulation result demonstrates the effectiveness and adaptability of the proposed method.
缪鹏彬, 余娟, 史乐峰, 刘国平, 梁明, 李文沅, 任洲洋. 基于改进非参数核密度估计和拉丁超立方抽样的电动公共客车负荷模型[J]. 电工技术学报, 2016, 31(4): 187-193.
Miao Pengbin, Yu Juan, Shi Lefeng, Liu Guoping, Liang Ming, Li Wenyuan, Ren Zhouyang. Electric Public Bus Load Model Based on Improved Kernel Density Estimation and Latin Hypercube Sampling. Transactions of China Electrotechnical Society, 2016, 31(4): 187-193.
[1] 葛文捷, 黄梅, 张维戈. 电动汽车充电站经济运行分析[J]. 电工技术学报, 2013, 28(2): 15-21. Ge Wenjie, Huang Mei, Zhang Weige. Economic operation analysis of the electric vehicle charging station[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 15-21. [2] 肖湘宁, 温剑锋, 陶顺,等. 电动汽车充电基础设施规划中若干关键问题的研究与建议[J]. 电工技术学报, 2014, 29(8): 1-10. Xiao Xiangning, Wen Jianfeng, Tao Shun, et al. Study and recommendations of the key issues in planning of electric vehicles’ charging facilities[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 1-10. [3] 罗卓伟, 胡泽春, 宋永华, 等. 电动汽车充电负荷计算方法[J]. 电力系统自动化, 2011, 35(14): 36-42. Luo Zhuowei, Hu Zechun, Song Yonghua,et al. Study on plug-in electric vehicles charging load calculating[J]. Automation of Electric Power Systems, 2011, 35(14): 36-42. [4] 杨冰, 王丽芳, 廖承林. 大规模电动汽车充电需求及影响因素[J]. 电工技术学报, 2013, 28(2): 22-27. Yang Bing, Wang Lifang, Liao Chenglin. Research on power-charging demand of large-scale electric vehicles and its impacting factors[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 22-27. [5] Pashajavid E, Golkar M A. Charging of plug-in electric vehicles: Stochastic modelling of load demand within domestic grids[C]//2012 20th Iranian Con- ference on Electrical Engineering, 2012: 535-539. [6] 徐国钧, 刘永胜, 李题印, 等. 基于层次分析和概率模拟的电动汽车对配网负荷影响研究[J]. 电力系统保护与控制, 2012, 40(22): 38-45. Xu Guojun, Liu Yongsheng, Li Tiyin, et al. Study on the impact of electric vehicles charging load integ- rated into distribution network based on analytic hierarchy process and probabilistic simulation[J]. Power System Protection and Control, 2012, 40(22): 38-45. [7] Leou Rong Ceng, Su Chun Lien, Lu Chan Nan. Stochastic analyses of electric vehicle charging impacts on distribution network[J]. IEEE Transa- ctions on Power Systems, 2014, 29(3): 1055-1063. [8] Dai Qian, Cai Tao, Duan Shanxu, et al. Stochastic modeling and forecasting of load demand for electric bus battery-swap station[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1909-1917. [9] Jeffery S Simonoff. Smoothing methods in stati- stics[M]. New York: Springer-Verlag, 1996. [10] Silverman B W. Density estimation for statistics and data analysis[M]. Boca Raton: CRC Press, 1986. [11] 赵渊, 张夏菲, 周家启. 电网可靠性评估的非参数多变量核密度估计负荷模型研究[J]. 中国电机工程学报, 2009, 29(31): 27-33. Zhao Yuan, Zhang Xiafei, Zhou Jiaqi. Load modeling utilizing nonparametric and multivariate Kernel density estimation in bulk power system reliability evaluation[J]. Proceedings of the CSEE, 2009, 29(31): 27-33. [12] Mckay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technimetrics, 1979, 21(2): 239- 245. [13] Young T, Mohlenkamp M J. Introduction to numerical methods and Matlab programming for engineers[M]. Athens: Ohio University, 2012. [14] 张德丰, 等. MATALAB 数值计算方法[M]. 北京: 机械工业出版社, 2010. [15] Qin Zhilong, Li Wenyuan, Xiong Xiaofu. Estimating wind speed probability distribution using Kernel density method[J]. Electric Power Systems Research, 2011, 81(12): 2139-2146.