A Review of Civil Low Voltage DC Distribution System Protection
Li Lulu1, Yong Jing1, Liang Shibin2, Tian Qingsheng2, Zeng Liqiang1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China; 2. Yunnan Electric Power Test and Research Institute Co. Ltd. Kunming 650217 China
Abstract:Low voltage direct current (LVDC) distribution systems have great potential application in conventional areas, such as residential buildings, and the promotion of LVDC is constrained by the lack of appropriate protection and security guarantees. Compared with traditional AC system, DC systems face more challenges, but related reviews are rare at present. This paper conducts a comprehensive overview regarding questions in electrical safety of LVDC distribution system, including protection scheme, short current calculation, dc arc extinction, capacitor discharge, protection against electric shock, terminal over-current protection, and special requirement of load protection from the civil point of view. The issues needed more research works and discussions are also presented.
李露露, 雍静, 梁仕斌, 田庆生, 曾礼强. 民用低压直流供电系统保护综述[J]. 电工技术学报, 2015, 30(22): 133-143.
Li Lulu, Yong Jing, Liang Shibin, Tian Qingsheng, Zeng Liqiang. A Review of Civil Low Voltage DC Distribution System Protection. Transactions of China Electrotechnical Society, 2015, 30(22): 133-143.
[1] Salamonsson D, Sannino A. Low-voltage DC distribu- tion system for commercial power systems with sen- sitive electronic loads[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1620-1627. [2] 广东华南家电研究院. 直流家电技术与发展前景[J].家电科技, 2009(22): 48-49. Guangdong South China Household Electric Appliances Research Institute. DC household electric appliances technology and development prospect[J]. China App- liance Technology, 2009(22): 48-49. [3] 雍静, 徐欣, 曾礼强, 等. 低压直流供电系统保护研究综述[J]. 中国电机工程学报, 2013, 33(7): 42-52. Yong Jing, Xu Xin, Zeng Liqiang, et al. A review of low voltage DC power distribution system[J]. Procee- dings of the CSEE, 2013, 33(7): 42-52. [4] 杨岳. 电气安全[M]. 北京: 机械工业出版社, 2010. [5] Jovcic D, Wu B. Fast fault current interruption on high-power DC networks[C]. IEEE Power and Energy Society General Meeting, 2010: 1-6. [6] Hoshi H, Tanaka T, Noritake M, et al. Consideration of inrush current on dc distribution system[C]. 34th IEEE International Telecommunications Energy Con- ference on Institute of Electrical and Electronics Engineers Inc, Scottsdale, AZ, 2012: 1-4. [7] Cuzner R M, Venkataramanan G. The status of DC micro-grid protection[C]. IEEE Industry Applications Society Annual Meeting, 2008: 1-8. [8] Sannino A, Postiglione G, Bollen M H J. Feasibility of a DC network for commercial facilities[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1499-1507. [9] Salamonsson D, Sannino A. Low-voltage DC distribu- tion system for commercial power systems with sen- sitive electronic loads[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1620-1627. [10] Park J D, Candelaria J. Fault detection and isolation in low-voltage DC-bus microgrid system[J]. IEEE Transactions on Power Delivery, 2013, 28(2): 779-787. [11] Li B, Li Y, Bo Z, et al. Design of protection and control scheme for microgrid systems[C]. IEEE Procee- dings of the 44th International Universities Power Engineering Conference, 2009: 1-5. [12] Daniel Salomonsson, Lennart S der, Ambra Sannino. An adaptive control system for a DC micro-grid fordata centers[J]. IEEE Transactions on Industry Applica- tions, 2008, 44(6): 1910-1917. [13] Kakigano H, Miura Y, Ise T. Low-voltage bipolar- type DC microgrid for super high quality distri- bution[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3066-3075. [14] 谢少军, 肖华锋, 罗运虎. 直流楼宇技术初议[J]. 电工技术学报, 2012, 27(1): 107-113. Xie Shaojun, Xiao Huafeng, Luo Yunhu. On DC- building technology[J]. Transactions of China Elec- trotechnical Society, 2012, 27(1): 107-113. [15] Cairoli P, Kondratiev I, Dougal R. Coordinated control of the bus tie switches and power supply converters for fault protection in DC microgrids[J]. IEEE Transac- tions on Power Electronics, 2013, 28(4): 2037-2047. [16] Baran M E, Mahajan N R. Overcurrent protection on voltage-source-converter-based multiterminal DC dis- tribution systems[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 406-412. [17] Yang J. Protection issue discussion of DC network development: circuit breaker or fault-tolerant converter [C]. 11th International Conference on Developments in Power Systems Protection, 2012: 1-6. [18] Tang L, Ooi B T. Locating and isolating DC faults in multi-terminal DC systems[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1877-1884. [19] Berizzi A, Silvestri A, Zaninelli D, et al. Short-circuit current calculations for dc systems[J]. IEEE Transac- tions on Industry Applications, 1996, 32(5): 990-997. [20] Ghisla U, Kondratiev I, Dougal R A. Branch circuit protection for DC systems[C]. IEEE Electric Ship Technologies Symposium, 2011: 234-239. [21] Baran M, Mahajan N R. PEBB based DC system protection: opportunities and challenges[C]. Trans- mission and Distribution Conference and Exhibition, 2005/2006 IEEE PES, 2006: 705-707. [22] Shimizu T, Jin Y, Kimura G. DC ripple current reduc- tion on a single-phase PWM voltage-source rectifier[J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1419-1428. [23] Ruxi Wang, Fred Wang, Dushan Boroyevich, et al. A high power density single phase PWM rectifier with active ripple energy storage[C]. The 25th Annual IEEE Applied Power Electronics Conference and Exposition, Palm Springs, CA, USA, 2010: 1378-1383. [24] Pietro Cairoli, Igor Kondratiev, Roger Dougal. Ground fault protection for DC bus using controlled power sequencing[C]. Proceedings of the IEEE Southeast Conference, NC, USA, 2010: 234-237. [25] Salomonsson D, Soder L, Sannino A. Protection of low-voltage DC microgrids[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1045-1053. [26] IEC. IEC 60479—1 Effects of current on human beings and livestock-Part 1: general aspects[S]. Geneva: IEC, 2005. [27] Mörx. Touch voltages for direct current(improved and refined edition of document 64/MT17)[R]. Geneva, Switzerland: IEC, 2012: 1-6. [28] IEC. IEC 60364-1 Low-voltage electrical installations- part 1: fundamental principles, assessment of general characteristics, definitions[S]. Geneva : IEC, 2005. [29] Hirose K, Tanaka T, Babasaki T. Grounding concept considerations and recommendations for 400VDC distribution system[C]. 33rd IEEE International Tele- communications Energy Conference, Amsterdam, Netherlands, 2011: 1-8. [30] Paul D. DC traction power system grounding[J]. IEEE Transactions on Industry Applications, 2002, 38(3): 818-824. [31] 吴卫民, 何远彬, 耿攀, 等. 直流微网研究中的关键技术[J]. 电工技术学报, 2012, 27(1): 98-106. Wu Weimin, He Yuanbin, Geng Pan, et al. Key tech- nologies for DC micro-grids[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 98-106. [32] 李露露, 雍静, 曾礼强, 等. 低压直流双极供电系统的接地型式研究[J]. 中国电机工程学报, 2014, 34(13): 2210-2218. Li Lulu, Yong Jing, Zeng Liqiang, et al. Research on grounding type of low voltage DC bipolar distribution system[J]. Proceedings of the CSEE, 2014, 34(13): 2210-2218. [33] Engelen K, Leung Shun E, Vermeyen P, et al. The feasibility of small-scale residential DC distribution systems[C]. IEEE IECON 2006-32nd Annual Con- ference on Industrial Electronics, 2006: 2618-2623. [34] Spoor D, Zhu J G. Improved single-ended traveling- wave fault-location algorithm based on experience with conventional substation transducers[J]. IEEE Transac- tions on Power Delivery, 2006, 21(3): 1714-1720. [35] Pan Y, Steurer M, Baldwin T L. Ground fault location testing of a noise pattern based approach on an ungrounded DC system[C]. IEEE Industrial and Commercial Power Systems Technical Conference (I&CPS), 2010: 1-8. [36] Yang J, Fletcher J E, O'Reilly J. Short-circuit and ground fault analyses and location in VSC-based DC network cables[J]. IEEE Transactions on Industrial Electronics, 2012, 59(10): 3827-3837. [37] F Ming, F Lijun, W Ruitian, et al. Coordination protection for DC distribution network in DC zonal shipboard power system[C]. IEEE 2011 International Conference on Advanced Power System Automation and Protection(APAP), 2011, 1: 418-421. [38] Kazakov A, Janson K, Vaimann T. Microgrids perfor- mance challenges[C]. 11th International Symposium on Topical Problems in the Field of Electrical and Power Engineering and Doctoral School of Energy and Geotechnolgy II, 2012: 42-46. [39] Matsuo H, Matsumoto S, Suetomi M, et al. Novel DC switch and DC socket for high voltage DC power feeding systems[C]. 2012 IEEE 34th International Telecommunications Energy Conference(INTELEC), 2012: 1-4. [40] Ahn J H, Kim Y S, Shin S M, et al. On the feasibility of DC home appliance in DC power supply system using power simulator[C]. IEEE Vehicle Power and Propulsion Conference(VPPC), 2012: 1498-1502. [41] Shim J S. DC appliance safety standards guideline through comparative analysis of AC and DC supplied home appliances[J]. Journal of Electrical Engineering & Technology, 2012, 7(1): 51-57. [42] Baek S, Yuba T, Kiryu K, et al. Development of plug and socket-outlet for 400 volts direct current distribution system[C]. IEEE 8th International Conference on Power Electronics and ECCE Asia(ICPE & ECCE), 2011: 218-222. [43] Birkl J, Zahlmann P. Overvoltage and surge protection in DC-systems[C]. IEEE International Conference on Lightning Protection(ICLP), 2012: 1-8. [44] Ahn J H, Koo K W, Kim D H, et al. Comparative analysis and safety standard guideline of AC and DC supplied home appliances[C]. IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), 2011: 1118-1125.