Research on Lightning Flashover Path Constraints of Compact Multi-Chamber Parallel Gap
Yuan Tao1, Zuo Sijia1, Sima Wenxia1, Yang Zewen1, Pu Shizun2
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Dehong Power Supply Bureau of Yunnan Power Grid Corporation Dehong 678400 China
Abstract:The multi-chamber parallel gap (MCPG) has the advantages of simple configuration, prominent arc extinguishing performance and self-arc extinguishing function, and is widely used in lightning protection of distribution lines as a new lightning protection device. However, due to the particular configuration of the MCPG, it is different from the conventional parallel gap, and its flashover path is complex under lightning impulse. When the discharge gap is set improperly, it may cause an uncontrolled flash path and arc damage to the insulator string. In view of the deficiencies of the whole structure analysis of the existing multi-chamber arc-extinguishing structure, in this paper, the lightning impulse test of the multi-chamber arc-extinguishing structure is carried out, and the equivalent relationship between this structure and the air gap of the rod-rod electrode is calculated and analyzed. The flashover channel is confined in the multi-chamber body and the arc is quenched. It ensures the safety and stability of the transmission line, which provides a reference for the engineering design of the MCPG of the distribution line. Firstly, the constraint principle of the flashover path is analyzed, and the lightning impulse test is carried out, which obtains the lightning impulse 50% breakdown voltage of the multi-chamber arc extinguishing structure. Then, because the MCPG and the rod-rod electrode parallel gap both are in extremely non-uniform electric fields, the length of the multi-chamber arc extinguishing structure is converted into the equivalent rod-rod electrode air gap length. According to the U50% curve of the air gap of the rod-rod electrode, it is given the calculation formula of the equivalent number of chambers in a multi-chamber arc extinguishing structure. According to the equivalent calculation formula, the length of the serial outer gap can be calculated, and the multi-chamber parallel gaps with different structures can be designed. Besides, the voltage-time characteristics test is carried out to verify the feasibility of the equivalent calculation formula, and determine the length of the outer series gap of MCPG under 35 kV. Finally, the test platform of MCPG is built, and the arc quenching test is carried out, and the quenching time difference of MCPG with different structures is compared. The following conclusions can be drawn from the test result and analysis: According to the equivalent gap formula, the outer serial gap length of the MCPG with different chamber numbers is calculated. The test results show that the voltage-time characteristic curve of the composite insulator is higher than that of the multi-chamber parallel gap. Under the same amplitude of lightning impulse voltage, with the decrease of the length of the outer series gap, the MCPG is easier to break down, and the test results are consistent with the theoretical analysis. Compared with the insulator string, the MCPG is more likely to break down under the lightning impulse voltage and has the ability to constrain the flashover path and accelerate the arc extinction. It has been applied in the 35 kV distribution lines, and the line operation and maintenance records show that the protection effect is noteworthy.
[1] 何金良, 曾嵘, 陈水明. 输电线路雷电防护技术研究(三): 防护措施[J]. 高电压技术, 2009, 35(12): 2917-2923. He Jinliang, Zeng Rong, Chen Shuiming.Lightning protection study of transmission line, part Ⅲ: protection measures[J]. High Voltage Engineering, 2009, 35(12): 2917-2923. [2] He Jinliang, Gu Shanqiang, Chen Shuiming, et al.Discussion on measures against lightning breakage of covered conductors on distribution lines[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 693-702. [3] 郭裕钧, 蒋兴良, 孟志高, 等. 带并联间隙地线复合绝缘子直流覆冰闪络特性[J]. 电工技术学报, 2017, 32(14): 252-258. Guo Yujun, Jiang Xingliang, Meng Zhigao, et al.DC icing flashover performance of composite insulators with a parallel air gap used for overhead ground wire insulation[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 252-258. [4] 司马文霞, 贾文彬, 袁涛, 等. 多段微孔结构中电弧的磁流体模型及气吹灭弧性能仿真[J]. 高电压技术, 2016, 42(11): 3376-3382. Sima Wenxia, Jia Wenbin, Yuan Tao, et al.MHD model of arc in multi-segment microhole structure and simulation of air-blowing arc-quenching performance[J]. High Voltage Engineering, 2016, 42(11): 3376-3382. [5] 吴祺嵘, 张认成, 涂然, 等. 直流故障电弧稳态传热特性仿真研究[J]. 电工技术学报, 2021, 36(13): 2697-2709. Wu Qirong, Zhang Rencheng, Tu Ran, et al.Simulation study on steady-state heat transfer characteristics of DC arc fault[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2697-2709. [6] 王志远, 高湛军, 张健磊, 等. 考虑短路及断线故障的有源配电网保护[J]. 电力系统自动化, 2021, 45(12): 133-141. Wang Zhiyuan, Gao Zhanjun, Zhang Jianlei, et al.Protection for active distribution network considering short-circuit and broken-line faults[J]. Automation of Electric Power Systems, 2021, 45(12): 133-141. [7] 熊兰, 陈永辉, 杨子康, 等. 直流配电网低压侧稳定燃弧阈值电压研究[J]. 电工技术学报, 2021, 36(19): 4097-4106. Xiong Lan, Chen Yonghui, Yang Zikang, et al.Study on threshold voltage for stable arcing by the low voltage side of DC distribution line[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4097-4106. [8] 郝莎, 徐建源, 林莘. 隔离开关电弧流体数学模型研究与应用[J]. 电工技术学报, 2021, 36(13): 2710-2718. Hao Sha, Xu Jianyuan, Lin Xin.Study on the application of fluid arc model in disconnector[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2710-2718. [9] 贾文彬, 司马文霞, 袁涛, 等. 半密闭灭弧腔室内电弧运动特性的三维仿真和实验[J]. 电工技术学报, 2021, 36(增刊1): 321-329. Jia Wenbin, Sima Wenxia, Yuan Tao, et al.3D simulation and experiment research on arc motion characteristics in the semi-enclosed arc-extinguishing chamber[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 321-329. [10] Zoro R, Leo T.Multi-chamber arrester study at tropical area for 20 kV lines lightning protection system[C]//2015 International Conference on Electrical Engineering and Informatics (ICEEI), Denpasar, Indonesia, 2015: 197-201. [11] Frolov V Y, Ivanov D V, Belsky R A.Increasing of operation security and of breaking capacity of surge arresters[C]//2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia, 2017: 1520-1523. [12] 沈海滨, 雷挺, 贺子鸣, 等. 10 kV线路用多腔室间隙防雷装置工频续流遮断能力选择建议[J]. 电网技术, 2019, 43(4): 1480-1486. Shen Haibin, Lei Ting, He Ziming, et al.Parameter selection suggestion of power frequency follow current interruption capability for multi-chamber gap lightning protection device used in 10 kV distribution lines[J]. Power System Technology, 2019, 43(4): 1480-1486. [13] 林淑娟. 110 kV多腔室避雷器防雷机理及试验研究[D]. 武汉: 武汉大学, 2018. [14] Podporkin G V, Enkin E Y, Kalakutsky E S, et al.Lightning protection of overhead lines rated at 3-35 kV and above with the help of multi-chamber arresters and insulator-arresters[C]//2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, China, 2010: 1247-1250. [15] Podporkin G V, Enkin E Y, Kalakutsky E S, et al.Overhead lines lightning protection by multi-chamber arresters and insulator-arresters[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 214-221. [16] Podporkin G V, Enkin E Y, Zhitenev V V, et al.Development of shield-type multi-chamber lightning arrester for 35 kV OHL[C]//2015 International Symposium on Lightning Protection (XIII SIPDA), Balneario Camboriu, Brazil, 2015: 88-93. [17] Frolov V, Ivanov D, Murashov I, et al.Mathematical simulation of processes in discharge chamber of multi-chamber system for lightning protection at overhead power lines[C]//2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), St. Petersburg, Russia, 2016: 562-565. [18] 王巨丰, 黄上师, 韩力, 等. 35 kV线路用自灭弧防雷间隙及工频续流遮断试验[J]. 电网技术, 2021, 45(3): 1208-1213. Wang Jufeng, Huang Shangshi, Han Li, et al.Study on power frequency follow current interruption test of self arc-extinguishing lightning protection gap in 35 kV distribution lines[J]. Power System Technology, 2021, 45(3): 1208-1213. [19] 王巨丰, 吴东, 梁雪, 等. 10 kV多间隙强气流灭弧防雷装置的仿真分析与试验研究[J]. 高电压技术, 2016, 42(5): 1497-1502. Wang Jufeng, Wu Dong, Liang Xue, et al.Simulation analysis and experimental research of 10 kV multiple-chamber arc-extinguishing lightning protection device with strong airflow[J]. High Voltage Engineering, 2016, 42(5): 1497-1502. [20] 司马文霞, 叶轩, 谭威, 等. 高海拔220 kV输电线路绝缘子串与并联间隙雷电冲击绝缘配合研究[J]. 中国电机工程学报, 2012, 32(10): 168-176, 23. Sima Wenxia, Ye Xuan, Tan Wei, et al.Lightning insulating co-ordination between insulator string and parallel gap device of 220 kV transmission line at high altitude area[J]. Proceedings of the CSEE, 2012, 32(10): 168-176, 23. [21] 孟伟航, 王巨丰, 黄上师, 等. 35 kV配电线路绝缘子串与多断点灭弧防雷间隙雷电冲击绝缘配合研究[J]. 电测与仪表, 2022, 59(5): 109-115. Meng Weihang, Wang Jufeng, Huang Shangshi, et al.Lighting insulating coordination between insulator string and multiple-break arc-extinguishing lighting protection gap of 35 kV transmission line[J]. Electrical Measurement & Instrumentation, 2022, 59(5): 109-115. [22] 杨庆, 董岳, 叶轩, 等. 高海拔地区500 kV输电线路用复合绝缘子与并联间隙的绝缘配合[J]. 高电压技术, 2013, 39(2): 407-414. Yang Qing, Dong Yue, Ye Xuan, et al.Insulating coordination between composite insulator and parallel gap device of 500 kV transmission line at high altitude area[J]. High Voltage Engineering, 2013, 39(2): 407-414. [23] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 16927.1—2011 高电压试验技术第1部分:一般定义及试验要求[S]. 北京: 中国标准出版社, 2012. [24] International Electrotechnical Commission.IEC 60060.1—2010 High-voltage test techniques - part 1: general definitions and test requirements[S]. 2010. [25] Jia Wenbin, Sima Wenxia, Yuan Tao, et al.Optimization and experimental study of the semi-closed short-gap arc-extinguishing chamber based on a magnetohydrodynamics model[J]. Energies, 2018, 11(12): 3335. [26] 刘晓鹏, 董曼玲, 邓虎威, 等. 空气间隙击穿后放电通道内的气体运动特性[J]. 电工技术学报, 2021, 36(13): 2667-2674. Liu Xiaopeng, Dong Manling, Deng Huwei, et al.Movement characteristics of the gas in discharge channel after air gap breakdown[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2667-2674.