1. National Active Distribution Network Technology Research Center Beijing Jiaotong University Beijing 100044 China; 2. Potevio New Energy Co., Ltd Beijing 100080 China
Abstract:The technology developments of batteries and charging techniques would promote the large-scale applications of electric vehicles. Pure electric taxis play an important role in the demonstration operation stage. As the most critical part of the infrastructure, the allocation quantity of the charging spots will directly affect the operation of the charging station and the construction costs. The behavior and characteristics of the electric taxis are analyzed based on the actual operational data of Shenzhen electric taxis, which is divided into two different time periods. Two electric taxi charging station service system models are established based on the queuing theory. Taking the minimum total cost of entire electric charging station service system as the objective function, the electric taxi charge spots optimal allocation model is proposed. The practical example simulation results of Shenzhen Nanshan local tax charging station verify the feasibility of the model. The number of the optimal charging spots is smaller than that of the current configuration. Through the optimal allocation of the charging spots, the cost of the charging station service system is reduced with minimal impact on the electric taxi charging to achieve a win-win.
[1] 刘振亚. 智能电网技术[M]. 北京: 中国电力出版社, 2010. [2] 周逢权, 连湛伟, 王晓雷, 等. 电动汽车充电站运营模式探析[J]. 电力系统保护与控制, 2010, 38(21): 63-66, 71. Zhou Fengquan, Lian Zhanwei, Wang Xiaolei, et al. Discussion on operation mode to the electric vehicle charging station[J]. Power System Protection and Control, 2010, 38(21): 63-66, 71. [3] 马琳琳, 杨军, 付聪, 等. 电动汽车充放电对电网影响研究综述[J]. 电力系统保护与控制, 2013, 41(3): 140-148. Ma Linlin, Yang Jun, Fu Cong, et al. Review on impact of electric car charging and discharging on power grid[J]. Power System Protection and Control, 2013, 41(3): 140-148. [4] 张帝, 姜久春, 杨玉青, 等. 规模充电设施接入对配电网的影响及应对措施[J]. 北京交通大学学报, 2013, 37(2): 68-73. Zhang Di, Jiang Jiuchun, Yang Yuqing, et al. Influence and response for scale charging facilities access to distribution network[J]. Journal of Beijing Jiaotong University, 2013, 37(2): 68-73. [5] 杨冰, 王丽芳, 廖承林. 大规模电动汽车充电需求及影响因素[J]. 电工技术学报, 2013, 28(2): 22-27, 35. Yang Bing, Wang Lifang, Liao Chenglin. Research on power-charging demand of large-scale electric vehicles and its impacting factors[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 22-27, 35. [6] 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34(11): 126-130. Tian Liting, Shi Shuanglong, Jia Zhuo. A statistical model for charging power demand of electric vehicles[J]. Power System Technology, 2010, 34(11): 126-130. [7] 张谦, 韩维健, 俞集辉, 等. 电动汽车充电站仿真模型及其对电网谐波影响[J]. 电工技术学报, 2012, 27(2): 159-164. Zhang Qian, Han Weijian, Yu Jihui, et al. Simulation model of electric vehicle charging station and the harmonic analysis on power grid[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 159- 164. [8] 郭伟, 王跃, 王兆安, 等. 应用于电动汽车充电站的PWM整流器控制方法[J]. 电工技术学报, 2012, 27(2): 153-158. Guo Wei, Wang Yue, Wang Zhaoan, et al. Control strategy for PWM rectifier in electrical vehicle charging station[J]. Transactions of China Electro- technical Society, 2012, 27(2): 153-158. [9] 田文奇, 和敬涵, 姜久春, 等. 电动汽车换电站有序充电调度策略研究[J]. 电力系统保护与控制, 2012, 40(21): 114-119. Tian Wenqi, He Jinghan, Jiang Jiuchun, et al. Research on dispatching strategy for coordinated charging of electric vehicle battery swapping station[J]. Power System Protection and Control, 2012, 40(21): 114-119. [10] Guo Feng, Inoa E, Choi W, et al. Study on global optimization and control strategy development for a phev charging facility[J]. IEEE Transactions on Vehicular Technology, 2013, 61(6): 2431-2441. [11] Worley O, Diego K. Optimization of battery charging and purchasing at electric vehicle battery swap stations[C]. IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, 2011: 1-4. [12] 葛文捷, 黄梅, 张维戈. 电动汽车充电站经济运行分析[J]. 电工技术学报, 2013, 28(2): 15-21. Ge Wenjie, Haung Mei, Zhang Weige. Economic operation analysis of the electric vehicle charging station[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 15-21. [13] 张帝, 姜久春, 张维戈, 等. 基于遗传算法的电动汽车换电站经济运行[J]. 电网技术, 2013, 37(8): 2101-2107. Zhang Di, Jiang Jiuchun, Zhang Weige, et al. Economic operation of electric vehicle battery swapping station based on genetic algorithms[J]. Power System Technology, 2013, 37(8): 2101-2107. [14] 吴春阳, 黎灿兵, 杜力, 等. 电动汽车充电设施规划方法[J]. 电力系统自动化, 2010, 34(24): 36-39, 45. Wu Chunyang, Li Canbing, Du Li, et al. A method for electric vehicle charging infrastructure planning[J]. Automation of Electric Power Systems, 2010, 35(24): 36-39, 45. [15] Wang Zhenpo, Liu Peng, Xin Tao. Optimizing the quantity of off-broad charger for whole vehicle charging station[C]. IEEE International Conference on Optoelectronics and Image Processing (ICOIP), Haiko, 2010: 93-96. [16] 李如琦, 苏浩益. 基于排队论的电动汽车充电设施优化配置[J]. 电力系统自动化, 2011, 35(14): 58-61. Li Ruqi, Su Haoyi. Optimal allocation of charging facilities for electric vehicles based on queuing theory[J]. Automation of Electric Power Systems, 2011, 35(14): 58-61. [17] Liu Zhipeng, Wen Fushuan, Ledwich G. Optimal planning of electric-vehicle charging stations in distribution systems[J]. IEEE Transactions on Power Delivery, 2013, 28(1): 102-110. [18] 刘自发, 张伟, 王泽黎. 基于量子粒子群优化算法的城市电动汽车充电站优化布局[J]. 中国电机工程学报, 2012, 32(22): 39-45. Liu Zhifa, Zhang Wei, Wang Zeli. Optimal planning of charging station for electric vehicle based on quantum PSO algorithm[J]. Proceedings of the CSEE, 2012, 32(22): 39-45. [19] 高赐威, 张亮, 薛飞, 等. 集中型充电站容量规划模型研究[J]. 中国电机工程学报, 2012, 32(31): 27-34. Gao Ciwei, Zhang Liang, Xue Fei, et al. Study on capacity and site planning of large-scale centralized charging stations[J]. Proceedings of the CSEE, 2012, 32(31): 27-34. [20] Winkler T, Komarnicki P, Mueller G. Electric vehicle charging stations in magdeburg[C]. IEEE Vehicle Power and Propulsion Conference (VPPC), Dearborn, 2009: 60-65. [21] Kuperman A, Levy U, Goren J, et al. Battery charger for electric vehicletraction battery switch station[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5391-5399. [22] 张维戈, 张帝, 温家鹏, 等. 电动公交更换式充电站的优化设计[J]. 北京交通大学学报, 2012, 36(2): 100-104. Zhang Weige, Zhang Di, Wen Jiapeng, et al. Opti- mized design of electric bus battery swap station[J]. Journal of Beijing Jiaotong University, 2012, 36(2): 100-104. [23] 张昌华, 孟劲松, 曹永兴, 等. 换电模式下电动汽 车换电充裕度模型及仿真研究[J]. 电网技术, 2012, 24 36(9): 15-19. Zhang Changhua, Meng Jinsong, Cao Yongxing, et al. Battery swapping requirement adequacy model for electric vehicles and its simulation research[J]. Power System Technology, 2012, 36(9): 15-19. [24] 王健, 梁桂航. 纯电动出租汽车快速更换电池运营模式[J]. 公路交通科技, 2011, 28(11): 142-145. Wang Jian, Liang Guihang. Battery quick replacement operation mode for electric taxi vehicle[J]. Journal of Highway and Transportation Research and Devel- opment, 2011, 28(11): 142-145.