电工技术学报  2019, Vol. 34 Issue (zk1): 272-281    DOI: 10.19595/j.cnki.1000-6753.tces.L80131
电力系统 |
基于出行概率矩阵的电动汽车充电站规划
姜欣1, 冯永涛1, 熊虎2, 王金凤1, 曾庆山1
1. 郑州大学电气工程学院 郑州 450001;
2. 国网湖北省电力有限公司电力科学研究院 武汉 470032
Electric Vehicle Charging Station Planning Based on Travel Probability Matrix
Jiang Xin1, Feng Yongtao1, Xiong Hu2, Wang Jinfeng1, Zeng Qingshan1
1. School of Electrical Engineering Zhengzhou University Zhengzhou 450001 China;
2. State Grid Hubei Electric Power Research Institute Wuhan 470032 China
全文: PDF (30153 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 电动汽车保有量的迅速增长需要更多快速充电站提供服务,本文提出一种基于城市路网特征和电动汽车出行概率矩阵的电动汽车充电站规划模型。首先基于城市道路拓扑结构和改进速度-流量关系模型模拟电动汽车行驶特征。在此基础上,通过构建电动汽车出行概率矩阵,采用蒙特卡洛方法预测电动汽车快充需求的时空分布。从便于用户友好充电的角度出发,以充电站建设运行成本和用户充电途中行驶成本最小为目标,基于出行概率矩阵建立了电动汽车充电站选址定容模型:采用Voronoi图划分充电站服务范围,通过改进粒子群算法确定充电站最优位置,利用排队论优化各充电站容量,得到统计意义上更为合理的结果。最后,以某市中心城区电动汽车充电站规划为例进行仿真分析,仿真结果表明所提模型和方法的可行性和有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜欣
冯永涛
熊虎
王金凤
曾庆山
关键词 电动汽车充电站规划出行概率矩阵时空分布Voronoi图排队论    
Abstract:The rapid growth of electric vehicles requires more fast charging stations to provide service. This paper proposes a charging station planning model based on the characteristics of urban road network and electric vehicle travel probability matrix. Firstly, the driving characteristics of electric vehicles are simulated based on the topological structure of urban roads and improved speed-flow relationship model. On this basis, the Monte Carlo method is used to predict the spatial-temporal distribution of fast charging demands by constructing the electric vehicle travel probability matrix. From the perspective of user-friendly charging, based on comprehensive consideration of charging station construction costs and minimizing driving costs for drivers, a constant volume model for the location of electric vehicle charging stations is established based on the trip probability matrix; and the charging station service areas are divided by Voronoi diagram. The scope, through the improved particle swarm algorithm to determine the optimal location of the charging station, the use of queuing theory to optimize the capacity of each charging station, a statistically more reasonable result is obtained. Finally, a simulation analysis of an electric vehicle charging station planning in a downtown area has been conducted to verify the feasibility and effectiveness of the model and method.
Key wordsElectric vehicle charging station planning    travel probability matrix    spatial-temporal distribution    Voronoi diagram    queuing theory   
收稿日期: 2018-07-11      出版日期: 2019-07-29
PACS: TM715  
基金资助:国家电网公司科技项目资助(SGZJ0000KXJS1800370)
通讯作者: 王跃,男,1972年生,教授,博士生导师,研究方向为大功率电能变换技术等。E-mail:wang124paper@163.com   
作者简介: 姜欣,女,1991年生,博士,讲师,研究方向为电力系统规划与运行。E-mail:jiangxin@zzu.edu.cn
引用本文:   
姜欣, 冯永涛, 熊虎, 王金凤, 曾庆山. 基于出行概率矩阵的电动汽车充电站规划[J]. 电工技术学报, 2019, 34(zk1): 272-281. Jiang Xin, Feng Yongtao, Xiong Hu, Wang Jinfeng, Zeng Qingshan. Electric Vehicle Charging Station Planning Based on Travel Probability Matrix. Transactions of China Electrotechnical Society, 2019, 34(zk1): 272-281.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.L80131          https://dgjsxb.ces-transaction.com/CN/Y2019/V34/Izk1/272