Abstract:A new rejuvenation liquid toward forming nano-SiO2 composite fillers inside water tree channels was presented, and the rejuvenation performance of the reformulation was compared with that of previous formulation. A water-needle method was employed to obtain water tree aged cables, and the cables were injected with two groups of nano rejuvenation liquids. Dielectric loss factor (tanδ) and AC breakdown tests show that the reformulation leads to a greater increase in cable insulation performance than the previous formulation. Microscope observation proved that there are fillers in the water tree channels after rejuvenation. By a scanning electron microscope (SEM) analysis, nano SiO2 particles are observed smaller than TiO2, and the SiO2 particles are more uniformly embed in the XLPE matrix inside the breakdown channels of the rejuvenated cables. According to the results, it shows that the new rejuvenation liquid can form nano-SiO2 composite fillers inside water tree channels, and the reformulation has better rejuvenation performance than the previous formulation. Furthermore, a coupling model was presented, based on which the experimental results were explained.
杨明亮,周凯,吴科,陶文彪,杨滴. 基于纳米SiO2复合填充的交联聚乙烯电缆水树修复新技术[J]. 电工技术学报, 2015, 30(14): 481-487.
Yang Mingliang,Zhou Kai,Wu Ke,Tao Wenbiao,Yang Di. A New Rejuvenation Technology Based on Formation of Nano-SiO2 Composite Fillers for Water Tree Aged XLPE Cables. Transactions of China Electrotechnical Society, 2015, 30(14): 481-487.
[1] 罗潘, 任志刚, 徐阳, 等. 退役高压交联聚乙烯电缆绝缘老化状态分析[J]. 电工技术学报, 2013, 28(10): 41-46. Luo Pan, Ren Zhigang, Xu Yang, et al. Aging condition analysis of high voltage XLPE cables out of service[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 41-46. [2] 赵威, 周凯, 刘凡, 等. 在XLPE电缆加速老化过程中理解水树的自愈性[J]. 电工技术学报, 2014, 29(6): 311-317. Zhao Wei, Zhou Kai, Liu Fan, et al. Understanding self-healing of water tree in process of accelerated aging of XLPE cables[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 311-317. [3] Zhou K, Zhao W, Tao X. Toward understanding the relationship between insulation recovery and micro structure in water tree degraded XLPE cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(6): 2135-2142. [4] Boggs S, Densley J, Kuang J. Mechanism for impulse conversion of water trees to electrical trees in XLPE[J]. IEEE Transactions on Power Delivery, 1998, 13(2): 310-315. [5] 廖瑞金, 周天春, 刘玲, 等. 交联聚乙烯电力电缆电树枝生长的混沌特性分析[J]. 电工技术学报, 2012, 27(5): 63-69. Liao Ruijin, Zhou Tianchun, Liu Ling, et al. The chaos characteristics analysis for electrical treeing propagation in XLPE power cables[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 63-69. [6] Stagi W R. Cable injection technology[C]. Transmission & Distribution Conference and Exposition, Latin, America, 2006: 1-4. [7] Chatterton W J, Dionne J. Chemical treatment of URD cables[C]. Electrical Insulation Conference, Montréal, Québec, Canada, 2009: 500-503. [8] Bertini G, Vincent G. Cable rejuvenation mechanisms [J]. Minutes of IEEE Insulated Conductors Committee (ICC) Sub A, Reno, NV, 2006: 1-8. [9] Zhou K, Tao X, Wang X, et al. Insight into the new role of titanium isopropoxide catalyst on rejuvenation for water tree aged cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 611-618. [10] 周凯, 赵威, 陶文彪, 等. XLPE 电缆绝缘水树老化的无机修复机理及试验分析[J]. 高电压技术, 2014, 40(1): 67-73. Zhou Kai, Zhao Wei, Tao Wenbiao, et al. Method and mechanism of the inorganic rejuvenation for water tree aged XLPE cables[J]. High Voltage Engineering, 2014, 40(1): 67-73. [11] 张立德, 牟季美. 纳米材料和纳米结构[M]. 北京: 科学出版社, 2001. [12] 蒋仁言. 威布尔模型族[M]. 北京: 科学出版社, 1998. [13] Al-Arainy A A, Ahaideb A A, Qureshi M I, et al. Statistical evaluation of water tree lengths in XLPE cables at different temperatures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(6): 995-1006. [14] Chen J L, Filippini J C. The morphology and behavior of the water tree[J]. IEEE Transactions on Electrical Insulation, 1993, 28(2): 271-286. [15] 罗杨, 吴广宁, 彭佳, 等. 聚合物纳米复合电介质的界面性能研究进展[J]. 高电压技术, 2012, 38(9): 2455-2464. Luo Yang, Wu Guangning, Peng Jia, et al. Research progress on interface properties of polymer nanodielec- trics[J]. High Voltage Engineering, 2012, 38(9): 2455-2464. [16] 雷清泉, 范勇, 王暄. 纳米高聚物复合材料的结构特性, 应用和发展趋势及其思考[J]. 电工技术学报, 2006, 21(2): 1-7. Lei Qingquan, Fan Yong, Wang Xuan. Structure properfy applications and developing trends of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2006, 21(2): 1-7. [17] 朱春玲, 陈祖耀, 张立祥, 等. 硅烷偶联剂对制备纳米SiO 2 粒子形态的影响[J]. 电子显微学报, 2003, 22(2): 168-171. Zhu Chunling, Chen Zuyao, Zhang Lixiang, et al. Influence of silane coupling agent on controlling the morphology of the silica microspheres[J]. Journal of Chinese Electron Microscopy Society, 2003, 22(2): 168-171. [18] 来国桥. 有机硅化学与工艺[M]. 北京: 化学工业出版社, 2011. [19] Park S J, Jin J S. Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites[J]. Journal of Colloid and Interface Science, 2001, 242(1): 174-179. [20] Ross R, Smit J. Composition and growth of water trees in XLPE[J]. IEEE Transactions on Electrical Insulation, 1992, 27(3): 519-531. [21] 李群. 纳米材料的制备与应用技术[M]. 北京: 化学工业出版社, 2008.