Abstract:With the acceleration of global energy transition, electric vehicles have become the core development direction of the automotive industry due to their zero emissions and high efficiency. The drive motor, as the “power heart” of an electric vehicle, directly affects the energy efficiency and reliability of the entire vehicle. In specific application scenarios, new energy vehicles have more stringent requirements for the volume and weight of the drive motor. High efficiency, high power density, and a compact structure are required, and the drive motor is continuously developing towards higher voltage and frequency. However, this development leads to increased AC losses and excessive temperature rise, which directly affects the operating efficiency and service life of the motor. Therefore, temperature management of the drive motor for new energy vehicles is of vital importance. Currently, there is no comprehensive summary and conclusion for suppressing the temperature rise of new energy vehicle drive motors. Thus, this paper reviews the types and characteristics of new energy vehicle drive motors, summarizes the key technologies of thermal design and thermal management, and looks forward to their future development trends and directions. The solutions for effectively reducing the loss density of the drive motor are summarized, as well as the suppression of the heat source, heat generation, and temperature rise. The suppression technologies for copper loss in the stator winding and stator core are discussed, with emphasis on the development of flat-wire motor winding and high-frequency AC loss reduction technologies. Then, the cooling system optimization methods for enhancing the heat dissipation capacity and their cooling effect are summarized. The casing, stator core, stator winding, and rotor cooling technologies are analyzed. In addition, the advantages, disadvantages, and application scope of cooling technologies are compared. This paper elaborates on the development of key technologies for drive motors in new energy vehicles, including their types and characteristics, thermal design technologies, and thermal management technologies. It also summarizes the future development trends of drive motors for new energy vehicles, including the permanent magnetization of drive motors, flat-wire winding for permanent magnet motors, non-crystalline/nanocrystalline treatment of the permanent magnet motor core, and permanent magnet motors with oil-cooling systems.
汪冬梅, 李思义, 梁艳萍. 新能源汽车驱动电机热设计与热管理技术研究综述[J]. 电工技术学报, 2026, 41(2): 389-415.
Wang Dongmei, Li Siyi, Liang Yanping. Comprehensive Review of Thermal Design and Thermal Management Technologies for New Energy Vehicle Drive Motors. Transactions of China Electrotechnical Society, 2026, 41(2): 389-415.
[1] Ehsani M, Singh K V, Bansal H O, et al.State of the art and trends in electric and hybrid electric vehicles[J]. Proceedings of the IEEE, 2021, 109(6): 967-984. [2] IEA. Electric vehicles[EB/OL].https://www.iea.org/energy-system/transport/electric-vehicles. [3] 鞠孝伟, 张凤阁, 程远, 等. 车用驱动电机扁线绕组关键问题研究综述[J]. 中国电机工程学报, 2024, 44(15): 6181-6199. Ju Xiaowei, Zhang Fengge, Cheng Yuan, et al.Overview of key issues of flat wire winding of traction motor for electric vehicles[J]. Proceedings of the CSEE, 2024, 44(15): 6181-6199. [4] Cai Chilan, Wang Xiaogang, Bai Yuewei, et al.Motor drive system design for electric vehicle[C]//2011 International Conference on Electric Information and Control Engineering, Wuhan, 2011: 1480-1483. [5] 中国汽车工程学会. 节能与新能源汽车技术路线图2.0[M]. 2版. 北京: 机械工业出版社, 2021. [6] 王晓远, 高鹏, 赵玉双. 电动汽车用高功率密度电机关键技术[J]. 电工技术学报, 2015, 30(6): 53-59. Wang Xiaoyuan, Gao Peng, Zhao Yushuang.Key technology of high power density motors in electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 53-59. [7] 林明耀, 乐伟, 林克曼, 等. 轴向永磁电机热设计及其研究发展综述[J]. 中国电机工程学报, 2021, 41(6): 1914-1929. Lin Mingyao, Le Wei, Lin Keman, et al.Overview on research and development of thermal design methods of axial flux permanent magnet machines[J]. Pro- ceedings of the CSEE, 2021, 41(6): 1914-1929. [8] Gundabattini E, Mystkowski A, Raja Singh R, et al.Water cooling, PSG, PCM, cryogenic cooling strategies and thermal analysis (experimental and analytical) of a permanent magnet synchronous motor: a review[J]. Sādhanā, 2021, 46(3): 124. [9] König P, Sharma D, Konda K R, et al.Comprehensive review on cooling of permanent magnet synchronous motors and their qualitative assessment for aerospace applications[J]. Energies, 2023, 16(22): 7524. [10] Credo A, Villani M, Fabri G, et al.Adoption of the synchronous reluctance motor in electric vehicles: a focus on the flux weakening capability[J]. IEEE Transactions on Transportation Electrification, 2022, 9(1): 805-818. [11] Abdelrahman A S, Algarny K S, Youssef M Z.A novel platform for powertrain modeling of electric cars with experimental validation using real-time hardware in the loop (HIL): a case study of GM second generation chevrolet volt[J]. IEEE Transac- tions on Power Electronics, 2018, 33(11): 9762-9771. [12] 许建锋, 阮丁山, 毛林林. 新能源汽车永磁同步电机中钕铁硼磁体的回收[J]. 中国稀土学报, 2022, 40(3): 375-384. Xu Jianfeng, Ruan Dingshan, Mao Linlin.Recovery of Nd-Fe-B magnet from permanent magnet syn- chronous motor of new energy vehicle[J]. Journal of the Chinese Society of Rare Earths, 2022, 40(3): 375-384. [13] Zhang Qing, Tan Luyao, Xu Guanghua.Evaluating transient performance of servo mechanisms by analysing stator current of PMSM[J]. Mechanical Systems and Signal Processing, 2018, 101: 535-548. [14] Moosavi S S, Djerdir A, Amirat Y A, et al.Demag- netization fault diagnosis in permanent magnet synchronous motors: a review of the state-of-the- art[J]. Journal of Magnetism and Magnetic Materials, 2015, 391: 203-212. [15] 熊斌, 崔刚, 鲍炳炎, 等. 基于磁热耦合法的高功率密度永磁电机永磁体温度分布特性与试验研究[J]. 电机与控制学报, 2024, 28(11): 104-116. Xiong Bin, Cui Gang, Bao Bingyan, et al.Tempera- ture distribution characteristics and experiment of permanent magnet for high power density permanent magnet motor based on electromagnetic thermal coupling method[J]. Electric Machines and Control, 2024, 28(11): 104-116. [16] 鞠孝伟, 龙佳兴, 张凤阁, 等. 电动飞行汽车用推进电机发展现状和研究综述[J]. 电工技术学报, 2025, 40(17): 5402-5421. Ju Xiaowei, Long Jiaxing, Zhang Fengge, et al.Development status and research overview of pro- pulsion motors for eVTOL[J]. Transactions of China Electrotechnical Society, 2025, 40(17): 5402-5421. [17] 关涛, 刘大猛, 何永勇. 永磁轮毂电机技术发展综述[J]. 电工技术学报, 2024, 39(2): 378-396. Guan Tao, Liu Dameng, He Yongyong.Review on development of permanent magnet in-wheel motors[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 378-396. [18] 崔刚, 熊斌, 黄康杰, 等. 电动汽车用永磁电机的失磁空间分布特性及影响因素[J]. 电工技术学报, 2023, 38(22): 5959-5974. Cui Gang, Xiong Bin, Huang Kangjie, et al.Spatial distribution characteristics and influencing factors of demagnetization of permanent magnet motor for electric vehicle[J]. Transactions of China Electro- technical Society, 2023, 38(22): 5959-5974. [19] Xu Zhenyong, Geng Haipeng.Loss analysis of high speed permanent magnet synchronous motor[C]//2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 2022: 698-703. [20] 高鹏, 任红兴, 王晓远, 等. 磁极径向组合式定子无磁轭模块化轴向磁通电机磁热特性分析[J]. 电工技术学报, 2025, 40(24): 7969-7983. Gao Peng, Ren Hongxing, Wang Xiaoyuan, et al.Magnetic and thermal characteristics analysis of magnetic pole radial combination yokeless and segmented armature axial flux machine[J]. Transac- tions of China Electrotechnical Society, 2025, 40(24): 7969-7983. [21] 佟文明, 田野, 李晓健, 等. 双层复合护套高速永磁电机转子涡流损耗解析模型[J]. 电工技术学报, 2024, 39(14): 4328-4340. Tong Wenming, Tian Ye, Li Xiaojian, et al.Analytical modeling for rotor eddy current loss of high-speed surface-mounted permanent magnet motor with double-layer compound retaining sleeve[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4328-4340. [22] 佟文明, 杨先凯, 鹿吉文, 等. 双层永磁体结构高速永磁电机转子涡流损耗解析模型[J]. 电工技术学报, 2024, 39(20): 6293-6304. Tong Wenming, Yang Xiankai, Lu Jiwen, et al.Rotor eddy current loss analytical model for high-speed permanent magnet motor based on double layer permanent magnet structure[J]. Transactions of China Electrotechnical Society, 2024, 39(20): 6293-6304. [23] 马铱林, 袁浩, 尹威, 等. 考虑等效电磁损耗电阻偏移的永磁同步电机直流信号注入在线参数辨识方法[J]. 电工技术学报, 2023, 38(22): 6015-6026. Ma Yilin, Yuan Hao, Yin Wei, et al.DC-signal- injection-based online parameters identification for permanent magnet synchronous machine considering variation of equivalent electromagnetic loss resi- stance[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 6015-6026. [24] 陈丽香, 付佳玉, 张超, 等. 电动汽车用永磁电机温升及冷却的研究[J]. 微电机, 2020, 53(6): 13-17, 23. Chen Lixiang, Fu Jiayu, Zhang Chao, et al.Research on temperature rise and cooling of permanent magnet motors for electric vehicles[J]. Micromotors, 2020, 53(6): 13-17, 23. [25] Carstensen C E, Bauer S E, Inderka R B, et al.Efficiency comparison of different winding confi- gurations for switched reluctance vehicle propulsion drives[C]//20th International Electric Vehicle Sym- posium (EVS-20), Long Beach CA(US), 2003: 1-12. [26] Sullivan C R.Optimal choice for number of strands in a Litz-wire transformer winding[J]. IEEE Transac- tions on Power Electronics, 1999, 14(2): 283-291. [27] Murgatroyd P N.Calculation of proximity losses in multistranded conductor bunches[J]. IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education), 1989, 136(3): 115-120. [28] Lotfi A W, Lee F C.Proximity losses in short coils of circular cylindrical windings[C]//23rd Annual IEEE Power Electronics Specialists Conference, Toledo, Spain, 1992: 1253-1260. [29] Inderka R B, Carstensen C E, De Doncker R W. Eddy currents in medium power switched reluctance machines[C]//2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference, Cairns, QLD, Australia, 2002: 979-984. [30] Ostovic V.Three-dimensional eddy currents com- putation in conductors of electrical machines[C]// 36st Annual IEEE Inductrial Application Conference, Chicago, IL, USA, 2001: 737-744. [31] Arumugam P, Hamiti T, Gerada C.Modeling of different winding configurations for fault-tolerant permanent magnet machines to restrain interturn short-circuit current[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 351-361. [32] 王斯博, 孙明冲, 龚海桂, 等. 车用高速永磁同步电机低交流损耗定子绕组优化[J]. 电机与控制学报, 2025, 29(1): 25-36. Wang Sibo, Sun Mingchong, Gong Haigui, et al.Optimization of low AC loss stator winding for high-speed permanent magnet synchronous motor for automotive applications[J]. Electric Machines and Control, 2025, 29(1): 25-36. [33] 王耀, 程远, 高博, 等. 基于有限元降阶泛化的扁线绕组交流损耗快速计算方法[J]. 电工技术学报, 2025, 40(18): 5832-5844. Wang Yao, Cheng Yuan, Gao Bo, et al.Fast calculation of AC losses in flat wire windings based on finite element reduced order generalization method[J]. Transactions of China Electrotechnical Society, 2025, 40(18): 5832-5844. [34] 王晓光, 尹浩, 余仁伟. 轴向磁通无铁心永磁电机多层矩形扁线绕组涡流损耗解析计算及优化[J]. 电工技术学报, 2023, 38(12): 3130-3140. Wang Xiaoguang, Yin Hao, Yu Renwei.Analytical calculation and parameter optimization of eddy current loss for coreless axial flux permanent magnet synchronous machine with multilayer flat wire winding[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3130-3140. [35] Bianchi N, Berardi G.Analytical approach to design hairpin windings in high performance electric vehicle motors[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018: 4398-4405. [36] Matt D, Boubaker N.Very low voltage and high efficiency motorisation for electric vehicles[J]. Emerging Electric Machines: Advances, Perspectives and Applications, 2021: 233900397. [37] Masoumi M, Rajasekhara K, Parati D, et al.Manu- facturing techniques for electric motor coils with round copper wires[J]. IEEE Access, 2022, 10: 130212-130223. [38] Chin J W, Cha K S, Park M R, et al.High efficiency PMSM with high slot fill factor coil for heavy-duty EV traction considering AC resistance[J]. IEEE Transactions on Energy Conversion, 2020, 36(2): 883-894. [39] Berardi G, Nategh S, Bianchi N, et al.A comparison between random and hairpin winding in E-mobility applications[C]//IECON 2020 The 46th Annual Con- ference of the IEEE Industrial Electronics Society, Singapore, 2020: 815-820. [40] Cai Wei, Fulton D, Congdon C L. Multi-set rectan- gular copper hairpin windings for electric machines: US6894417[P].2005-05-17. [41] Arzillo A, Braglia P, Nuzzo S, et al.Challenges and future opportunities of hairpin technologies[C]//2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, Netherlands, 2020: 277-282. [42] Zou Tianjie, Gerada D, Rocca A L, et al.A com- prehensive design guideline of hairpin windings for high power density electric vehicle traction motors[J]. IEEE Transactions on Transportation Electrification, 2022, 8(3): 3578-3593. [43] Juergens J, Fricassè A, Marengo L, et al.Innovative design of an air cooled ferrite permanent magnet assisted synchronous reluctance machine for auto- motive traction application[C]//2016 XXII Inter- national Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 2016: 803-810. [44] Momen F, Rahman K, Son Y.Electrical propulsion system design of chevrolet bolt battery electric vehicle[J]. IEEE Transactions on Industry Appli- cations, 2018, 55(1): 376-384. [45] 萝卜报告. 这才是比亚迪的真正实力[EB/OL]. (2025- 03-21). https://news.qq.com/rain/a/20250321A09H4900. [46] AEE汽车技术平台. 特斯拉Tesla电驱动进化史, 少而精的借鉴意义[EB/OL]. (2024-12-13). https://mp.weixin.qq.com/s/YW-k5mxdVJ65Hz6X8Ugh7g. [47] Preci E, Nuzzo S, Valente G, et al.Segmented hairpin topology for reduced losses at high-frequency operations[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 688-698. [48] Zhao Yu, Li Dawei, Pei Tonghao, et al.Overview of the rectangular wire windings AC electrical machine[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2): 160-169. [49] Islam M S, Husain I, Ahmed A, et al.Asymmetric bar winding for high-speed traction electric machines[J]. IEEE Transactions on Transportation Electrification, 2020, 6(1): 3-15. [50] 杨永喜, 蔡蔚, 赵慧超, 等. 新能源汽车高速电机定子换位绕组优化设计[J]. 电机与控制学报, 2023, 27(10): 85-95. Yang Yongxi, Cai Wei, Zhao Huichao, et al.Design and optimization of the transported winding for the high-speed electrical machine of electric vehicles[J]. Electric Machines and Control, 2023, 27(10): 85-95. [51] Kampker A, Heimes H H, Dorn B, et al.Challenges of the continuous hairpin technology for production techniques[J]. Energy Reports, 2023, 9: 107-114. [52] EDC电驱未来. 新能源汽车讲解|扁线电机定子产品与工艺[EB/OL]. (2025-04-23). https://mp.weixin.qq.com/s/VPQuLCjOLBSxZ-JG0PEmGw. [53] Hiruma S, Otomo Y, Igarashi H.Eddy current analysis of Litz wire using homogenization-based FEM in conjunction with integral equation[J]. IEEE Transactions on Magnetics, 2018, 54(3): 7001404. [54] Wang Shen, de Rooij M A, Odendaal W G, et al. Reduction of high-frequency conduction losses using a planar Litz structure[C]//IEEE 34th Annual Conference on Power Electronics Specialist, Acapulco, Mexico, 2003: 887-891. [55] Ju Xiaowei, Cheng Yuan, Du Bochao, et al.AC loss analysis and measurement of a hybrid transposed hairpin winding for EV traction machines[J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 3525-3536. [56] 汽车工程师之家. 从比亚迪海豹拆解, 详看电机技术[EB/OL]. (2025-01-15). https://mp.weixin.qq.com/s/pJ2Q4NhXZj77xN-OjFJQjA. [57] 浙江方正电机股份有限公司. 电机大讲堂-方正扁线驱动电机[EB/OL]. (2020-09-14). https://www.fdm.com.cn/news/show-104.html. [58] 华域汽车电动系统有限公司. 高性能8层扁线驱动电机[EB/OL].https://www.hasco-eds.com. [59] 博格华纳. 220永磁同步电机[EB/OL]. https://www.borgwarner.com/zh/technologies/electric-drive-motors. [60] 蔚来. 340kW高性能永磁同步电驱[EB/OL]. https://www.nio.cn/innovation. [61] 今日电机. 闭口槽连续波绕组混磁电机: 马威新技术电机年产能可达24万台[EB/OL]. (2025-04-11). https://mp.weixin.qq.com/s/NHmLdW2QndQUtzI4vLw-yQ. [62] Liang Yanping, Wu Lei, Bian Xu, et al.The influence of transposition angle on 3-D global domain magnetic field of stator bar in water-cooled turbo-generator[J]. IEEE Transactions on Magnetics, 2015, 51(11): 8113804. [63] Liang Yanping, Wu Lei, Bian Xu, et al.Influence of void transposition structure on the leakage magnetic field and circulating current loss of stator bars in water-cooled turbo-generators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3389-3396. [64] 梁艳萍, 柳杨, 王晨光. 大型水轮发电机定子绕组新型组合换位方法分析[J]. 中国电机工程学报, 2016, 36(11): 3092-3100. Liang Yanping, Liu Yang, Wang Chenguang.Analysis on a new method of combination trans- position for the stator wingdings of the hydro- generators[J]. Proceedings of the CSEE, 2016, 36(11): 3092-3100. [65] Wang Dongmei, Liang Yanping, Gao Lianlian, et al.Research on transposition method and loss of multi- turn coil in an induction motor[J]. IEEE Transactions on Magnetics, 2019, 55(10): 7501604. [66] Wang Dongmei, Liang Yanping, Gao Lianlian, et al.A new global transposition method of stator winding and its loss calculation in AC machines[J]. IEEE Transactions on Energy Conversion, 2020, 35(1): 149-156. [67] Liang Yanping, Zhao Fuchao, Xu Kangwen, et al.Analysis of copper loss of permanent magnet synchronous motor with formed transposition winding[J]. IEEE Access, 2021, 9: 101105-101114. [68] Liu Jia, Liang Yanping, Yang Peipei.Research on novel flat wire transposed winding of PMSM for electric vehicle[J]. IEEE Transactions on Transpo- rtation Electrification, 2023, 9(1): 771-781. [69] 张冬冬, 赵海森, 王义龙, 等. 用于电机损耗精细化分析的分段变系数铁耗计算模型[J]. 电工技术学报, 2016, 31(15): 16-24. Zhang Dongdong, Zhao Haisen, Wang Yilong, et al.A piecewise variable coefficient model for precise analysis on iron losses of electrical machines[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 16-24. [70] 戈宝军, 罗前通, 王立坤, 等. 高速永磁同步电动机铁耗分析[J]. 电机与控制学报, 2020, 24(4): 32-39. Ge Baojun, Luo Qiantong, Wang Likun, et al.Analysis of iron losses of high-speed permanent magnet synchronous motor[J]. Electric Machines and Control, 2020, 24(4): 32-39. [71] Asama J, Oiwa T, Shinshi T, et al.Experimental evaluation for core loss reduction of a consequent- pole bearingless disk motor using soft magnetic composites[J]. IEEE Transactions on Energy Con- version, 2018, 33(1): 324-332. [72] Soda N, Hayashi N, Enokizono M.Analytical study on core loss reduction of segmented stator core motor in consideration of rolling direction of nonoriented electrical steel sheet[J]. IEEE Transactions on Industry Applications, 2021, 57(5): 4745-4753. [73] Ouyang Gaoyuan, Chen Xi, Liang Yongfeng, et al.Review of Fe-6.5wt%Si high silicon steel: a pro- mising soft magnetic material for sub-kHz appli- cation[J]. Journal of Magnetism and Magnetic Materials, 2019, 481: 234-250. [74] Enokizono M, Wakabayashi D, Tsuchida Y, et al.Core loss reduction for high-speed motor[C]//2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 2018: 2586-2592. [75] Soda N, Enokizono M.Stator core shape design for low core loss and high power density of a small surface-mounted permanent motor[J]. Sensors, 2020, 20(5): 1418. [76] Zhang Wenshuai, Chen Jieshi, Lin Meng, et al.The influence of laser process parameters on the Iron loss of grain-oriented silicon steel[J]. Journal of Materials Research and Technology, 2024, 33: 2958-2969. [77] Di Schino A, Montanari R, Sgambetterra M, et al.Heat treatment effect on microstructure evolution of two Si steels manufactured by laser powder bed fusion[J]. Journal of Materials Research and Tech- nology, 2023, 26: 8406-8424. [78] Okamoto S, Denis N, Kato Y, et al.Core loss redu- ction of an interior permanent-magnet synchronous motor using amorphous stator core[J]. IEEE Transa- ctions on Industry Applications, 2016, 52(3): 2261-2268. [79] 佟文明, 孙静阳, 程雪斌, 等. 非晶合金铁心叠片导热系数测试与电机热分析[J]. 电工技术学报, 2017, 32(15): 42-49. Tong Wenming, Sun Jingyang, Cheng Xuebin, et al.Thermal conductivity measurement of amorphous alloy laminated core and thermal analysis of amorphous alloy motor[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 42-49. [80] Ismagilov F R, Papini L, Vavilov V E, et al.Design and performance of a high-speed permanent magnet generator with amorphous alloy magnetic core for aerospace applications[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 1750-1758. [81] 新华网客户端. 广汽埃安夸克电驱2.0量产下线: 电机效率98.5%转速30000rpm[EB/OL]. (2024- 08-23). https://app.xinhuanet.com/news/article.htmlarticleId=535333c836bb46332c508b134c25506e. [82] Suzuki K.Recent advances in nanocrystalline soft magnetic materials: a critical review for way forward[J]. Journal of Magnetism and Magnetic Materials, 2024, 592: 171677. [83] Zhou Jing, Li Xuesong, Hou Xibei, et al.Ultrahigh permeability at high frequencies via a magnetic- heterogeneous nanocrystallization mechanism in an iron-based amorphous alloy[J]. Advanced Materials, 2023, 35(40): 2304490. [84] Luo Ting, Liu Hailang, Huang Caimin, et al.Improved high frequency soft magnetic properties in FeSiBCuNb nanocrystalline alloys induced by additional low magnetic field annealing[J]. Journal of Superconductivity and Novel Magnetism, 2024, 37(8): 1421-1428. [85] Li Xuesong, Zhou Jing, Shen Laiquan, et al.Exceptionally high saturation magnetic flux density and ultralow coercivity via an amorphous- nanocrystalline transitional microstructure in an FeCo-based alloy[J]. Advanced Materials, 2023, 35(50): 2205863. [86] 佟文明, 李世奇, 唐任远. 高效非晶合金电机关键技术研究综述[J]. 沈阳工业大学学报, 2024, 46(5): 496-513. Tong Wenming, Li Shiqi, Tang Renyuan.Review on key technologies of high-efficiency amorphous alloy motors[J]. Journal of Shenyang University of Tech- nology, 2024, 46(5): 496-513. [87] 裴瑞琳, 李志野, 李雨笑, 等. “双碳”背景下新能源汽车电机用软磁材料发展趋势与应用现状[J]. 沈阳工业大学学报, 2024, 46(5): 590-604. Pei Ruilin, Li Zhiye, Li Yuxiao, et al.Development trends and application status of soft magnetic materials for electric vehicle motors under carbon peaking and carbon neutrality[J]. Journal of Shenyang University of Technology, 2024, 46(5): 590-604. [88] 黎宝梁, 邓晗静, 龙云峰, 等. 非晶合金电机铁心加工与关键技术研究综述[J]. 电工技术, 2024(15): 129-132. Li Baoliang, Deng Hanjing, Long Yunfeng, et al.Summary of research on processing and key tech- nologies of amorphous alloy motor core[J]. Electric Engineering, 2024(15): 129-132. [89] Theisen E A.Recent advances and remaining challenges in manufacturing of amorphous and nanocrystalline alloys[J]. IEEE Transactions on Magnetics, 2022, 58(8): 2001207. [90] 非晶中国. 第三届非晶电机技术发展与应用研讨会在广州召开[EB/OL]. (2025-04-27). http://www.bmgchina.com/shownew.aspxid=2703. [91] 陈德志, 张玉庸, 白保东, 等. 不同温度及谐波下硅钢片电磁-力特性与变频电机振动[J]. 电工技术学报, 2020, 35(22): 4647-4656. Chen Dezhi, Zhang Yuyong, Bai Baodong, et al.Electromagnetic-force and vibration of silicon steel sheetand variable frequency motor under different temperature and harmonic[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4647-4656. [92] Chen Xiao, Wang Jiabin, Sen B, et al.A high-fidelity and computationally efficient model for interior permanent-magnet machines considering the magnetic saturation, spatial harmonics, and iron loss effect[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4044-4055. [93] Lee K H, Cha H R, Kim Y B.Development of an interior permanent magnet motor through rotor cooling for electric vehicles[J]. Applied Thermal Engineering, 2016, 95: 348-356. [94] Ye Zhennan, Luo Weidong, Zhang Wenming, et al.Simulative analysis of traction motor cooling system based on CFD[C]//2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 2011: 746-749. [95] Roy P, J Bourgault A, Towhidi M, et al. An algorithm for effective design and performance investigation of active cooling system for required temperature and torque of PM traction motor[J]. IEEE Transactions on Magnetics, 2021, 57(2): 8201507. [96] Liang Peixin, Chai Feng, Shen Ke, et al.Water jacket and slot optimization of a water-cooling permanent magnet synchronous in-wheel motor[J]. IEEE Transa- ctions on Industry Applications, 2021, 57(3): 2431-2439. [97] Grunditz E A, Lundmark S T, Alatalo M.Evaluation of three cooling concepts for an electric vehicle motor-lumped parameter models[C]//2020 Inter- national Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 2020: 860-866. [98] Chang Jiujian, Fan Yanen, Wu Jinglai, et al.A yokeless and segmented armature axial flux machine with novel cooling system for in-wheel traction applications[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4131-4140. [99] Yang Cen, Wang Huizhen, Niu Xianzhi, et al.Design and analysis of cycling oil cooling in driving motors for electric vehicle application[C]//2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 2016: 1-6. [100] Li Ye, Li Qi, Fan Tao, et al.Design of cooling channel for stator immersion oil cooled motor[C]// 2023 2nd Asia Power and Electrical Technology Conference (APET), Shanghai, China, 2023: 420-423. [101] Huang Zhe, Nategh S, Lassila V, et al.Direct oil cooling of traction motors in hybrid drives[C]//2012 IEEE International Electric Vehicle Conference, Greenville, SC, USA, 2012: 1-8. [102] Lu Qinfen, Zhang Xinmin, Chen Yi, et al.Modeling and investigation of thermal characteristics of a water-cooled permanent-magnet linear motor[J]. IEEE Transactions on Industry Applications, 2015, 51(3): 2086-2096. [103] Fang Guoyun, Yuan Wei, Yan Zhiguo, et al.Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor[J]. Applied Thermal Engineering, 2019, 152: 594-604. [104] Lundmark S T, Bergqvist A, Chakarova-Kaeck S D. Coupled 3-D thermal and electromagnetic modelling of a liquid-cooled IPM traction motor[C]//2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 2017: 1-6. [105] Lahoud N, Faucher J, Malec D, et al.Electrical aging of the insulation of low-voltage machines: model definition and test with the design of experiments[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 4147-4155. [106] Sumislawska M, Gyftakis K N, Kavanagh D F, et al.The impact of thermal degradation on properties of electrical machine winding insulation material[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 2951-2960. [107] Guo Yujun, Wang Aiyuan.Thermal design and simu- lation of winding cooling for permanent magnet synchronous motor of electric vehicle[C]//2021 IEEE 4th Student Conference on Electric Machines and Systems (SCEMS), Huzhou, China, 2021: 1-5. [108] Xu Z, Rocca A L, Pickering S J, et al.Mechanical and thermal design of an aeroengine starter/generator[C]// 2015 IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d’Alene, ID, USA, 2015: 1607-1613. [109] Marcolini F, De Donato G, Capponi F G, et al.Direct oil cooling of end-windings in torus-type axial-flux permanent-magnet machines[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 2378-2386. [110] EL-Refaie A M, Alexander J P, Galioto S, et al. Advanced high-power-density interior permanent magnet motor for traction applications[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3235-3248. [111] Li Zhenguo, Guo Jianhong, Fu Deping, et al.Research on heat transfer of spraying evaporative cooling technique for large electrical machine[C]//2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, 2009: 1-4. [112] Degano M, Arumugam P, Fernando W, et al.An optimized bi-directional, wide speed range electric starter-generator for aerospace application[C]//7th IET International Conference on Power Electronics, Machines and Drives, Manchester, UK, 2014: 1-6. [113] Camilleri R, Howey D A, McCulloch M D. Predicting the temperature and flow distribution in a direct oil-cooled electrical machine with segmented stator[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 82-91. [114] Liu Chuan, Xu Zeyuan, Gerada D, et al.Experimental investigation on oil spray cooling with hairpin windings[J]. IEEE Transactions on Industrial Elec- tronics, 2020, 67(9): 7343-7353. [115] Liu Chuan, Gerada D, Xu Zeyuan, et al.Estimation of oil spray cooling heat transfer coefficients on hairpin windings with reduced-parameter models[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 793-803. [116] Zhang Fengyu, Gerada D, Xu Zeyuan, et al.A thermal modeling approach and experimental validation for an oil spray-cooled hairpin winding machine[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2914-2926. [117] Liu Chuan, Xu Zeyuan, Gerada D, et al.Experimental investigation of oil jet cooling in electrical machines with hairpin windings[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 598-608. [118] Wang Huimin, Liu Xiaochen, Kang Ming, et al.Oil injection cooling design for the IPMSM applied in electric vehicles[J]. IEEE Transactions on Trans- portation Electrification, 2022, 8(3): 3427-3440. [119] Rocca A L, Rocca S L, Zou T, et al.Performance assessment of standard cooling strategies for hairpin windings[C]//2022 International Conference on Elec- trical Machines, Valencia, Spain, 2022: 1163-1169. [120] Visaria M, Mudawar I.Application of two-phase spray cooling for thermal management of electronic devices[C]//2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Elec- tronic Systems, Orlando, FL, USA, 2008: 275-283. [121] Madonna V, Walker A, Giangrande P, et al.Improved thermal management and analysis for stator end- windings of electrical machines[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5057-5069. [122] Lindh P M, Petrov I, Semken R S, et al.Direct liquid cooling in low-power electrical machines: proof-of- concept[J]. IEEE Transactions on Energy Conversion, 2016, 31(4): 1257-1266. [123] Lindh P, Petrov I, Jaatinen-Värri A, et al.Direct liquid cooling method verified with an axial-flux permanent-magnet traction machine prototype[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6086-6095. [124] Schiefer M, Doppelbauer M.Indirect slot cooling for high-power-density machines with concentrated winding[C]//2015 IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d’Alene, ID, USA, 2015: 1820-1825. [125] Le Wei, Lin Mingyao, Lin Keman, et al.A novel stator cooling structure for yokeless and segmented armature axial flux machine with heat pipe[J]. Energies, 2021, 14(18): 5717. [126] Sun Yalong, Zhang Shiwei, Yuan Wei, et al.Appli- cability study of the potting material based thermal management strategy for permanent magnet syn- chronous motors[J]. Applied Thermal Engineering, 2019, 149: 1370-1378. [127] Nategh S, Boglietti A, Barber D, et al.Thermal and manufacturing aspects of traction motors potting: a deep experimental evaluation[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 1026-1035. [128] Acquaviva A, Skoog S, Thiringer T.Design and verification of in-slot oil-cooled tooth coil winding PM machine for traction application[J]. IEEE Transa- ctions on Industrial Electronics, 2021, 68(5): 3719-3727. [129] Zhu Gaojia, Liu Xiaoming, Li Longnü, et al.Coupled electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machines with a modified model[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2): 204-209. [130] Fawzal A S, Cirstea R M, Gyftakis K N, et al.Fan performance analysis for rotor cooling of axial flux permanent magnet machines[J]. IEEE Transactions on Industry Applications, 2017, 53(4): 3295-3304. [131] Gai Yaohui, Widmer J D, Steven A, et al.Numerical and experimental calculation of CHTC in an oil-based shaft cooling system for a high-speed high-power PMSM[J]. IEEE Transactions on Industrial Electro- nics, 2020, 67(6): 4371-4380. [132] Wang Runyu, Fan Xinggang, Li Dawei, et al.Com- parison of heat transfer characteristics of the hollow-shaft oil cooling system for high-speed permanent magnet synchronous machines[J]. IEEE Transactions on Industry Applications, 2022, 58(5): 6081-6092. [133] Chu Chenglong, Yao Yu, Huang Yunkai, et al.Appli- cation and verification of spiral water cooling for rotor in high-power density motors[J]. IEEE Transa- ctions on Transportation Electrification, 2025, 11(1): 1245-1256. [134] Lim D H, Kim S C.Thermal performance of oil spray cooling system for in-wheel motor in electric vehicles[J]. Applied Thermal Engineering, 2014, 63(2): 577-587. [135] Lu Qi, Muthukumar R, Ge Haiwen, et al.Numerical study of a rotating liquid jet impingement cooling system[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120446. [136] Lian Wenlei, Han Taoyi.Flow and heat transfer in a rotating heat pipe with a conical condenser[J]. International Communications in Heat and Mass Transfer, 2019, 101: 70-75. [137] Nonneman J, van der Sijpe B, T’Jollyn I, et al. Evaluation of high performance rotor cooling tech- niques for permanent magnet electric motors[C]//2021 IEEE International Electric Machines & Drives Conference (IEMDC), Hartford, CT, USA, 2021: 1-7. [138] 今日电机. 技术报告|驱动电机先进的冷却技术[EB/OL]. (2024-08-03). https://mp.weixin.qq.com/s/uPiv_pofeeFYYi9lfpDrrw. [139] 赵一铭, 朱一方, 王金明, 等. 新能源汽车高端化发展方向研究[J]. 时代汽车, 2025(10): 98-102. Zhao Yiming, Zhu Yifang, Wang Jinming, et al.Research on the development direction of high-end new energy vehicles[J]. Auto Time, 2025(10): 98-102. [140] 朱兰. “十五五”时期中国扩大新能源汽车产业领先优势的挑战与对策[J]. 当代经济管理, 2025, 47(8): 65-71. Zhu Lan.Challenges and countermeasures for China to expand its leading edge in the new energy vehicle industry during the 15th Five-Year Plan period[J]. Contemporary Economic Management, 2025, 47(8): 65-71. [141] 颉浩浩, 吴杞康, 鲍久圣, 等. 新能源汽车驱动电机技术现状及混合励磁研究进展[J]. 电机与控制应用, 2025, 52(1): 36-51. Xie Haohao, Wu Qikang, Bao Jiusheng, et al.Current status of new energy vehicle drive motor technology and research progress on hybrid excitation[J]. Electric Machines & Control Application, 2025, 52(1): 36-51. [142] 高柏. 中国电动汽车崛起的秘密[J]. 文化纵横, 2023(6): 18-38. Gao Bai.The secret of China’s electric vehicle rise[J]. Culture Crossings, 2023(6): 18-38. [143] 华若汀云想电驱动. 即特斯拉劲敌, 又扁线“进阶者”[EB/OL].(2024-03-27). https://mp.weixin.qq.com/s/x4FPm4Tah0YMLKll35QOoA. [144] 汪善进, 程远. 欧洲新能源汽车现状与发展趋势[J]. 汽车安全与节能学报, 2021, 12(2): 135-149. Wang Shanjin, Cheng Yuan.Current status and development trends of European new energy vehicles[J]. Journal of Automotive Safety and Energy, 2021, 12(2): 135-149. [145] 金仁淑. 日本新能源汽车战略转型对中国的挑战与机遇[J]. 国际经济合作, 2024(5): 44-53, 93. Jin Renshu.Strategic transformation of new energy vehicles in Japan: challenges and opportunities for China[J]. Journal of International Economic Coope- ration, 2024(5): 44-53, 93. [146] SysPro系统工程智库. 小米SU7电机技术深度解析| HyperEngine V6, V6s, V8s高速、高效、高功率密度揭秘[EB/OL]. (2025-01-07). https://www.eet-china.com/mp/a402758.html. [147] EDC电驱未来. 华为DriveOne电机是否先进?国产电机的真实表现[EB/OL]. (2024-11-30). https:// mp.weixin.qq.com/s/C0LHIQ-1DteytcbSzxTbzA. [148] 电驱动Benchmarker. 对标拆解: 功率密度全球第一的Lucid Air驱动电机拆解分析[EB/OL]. (2025-03- 06). https://mp.weixin.qq.com/s/CUQdqbWE57DR_ ptHr7-mTQ. [149] 调皮的JINX. 格局打开-雷诺ZOE R135电机冷却方案[EB/OL]. (2023-06-17). https://mp.weixin.qq.com/s/3la4E7NH2wDC-FFas37y3g. [150] RIO电驱动.BMW I7全新上市, 重温经典第五代eDrive电驱系统的黑科技[EB/OL]. (2022-12-26). https://mp.weixin.qq.com/s/KdDbFA-9d-3gZ7v0YTF8Pw. [151] RIO电驱动. 丰田第五代THS混动系统解析[EB/OL]. (2025-03-31)[2025-05-15]. https://mp.weixin.qq.com/s/PKBV6iMmkL20OLPek3UmIg. [152] Porsche Newsroom. 高电压: 详解保时捷电驱动系统[EB/OL]. (2021-09-22). https://newsroom.porsche.com/zh/2021/technology/cn-porsche-electric-motors-taycan-high-voltage-christophorus-398-25829.html.