Multiple Parameters Identification Method with Considering the Span Capacitor Effect in the Underwater Magnetic Coupled Resonant Wireless Power Transfer System
Liu Xu, Zhong Jing, Rong Cancan, Xia Chenyang
School of Electrical Engineering China University of Mining and Technology Xuzhou 221116 China
Abstract:Due to significant differences in physical parameters between marine and aerial environments, including electrical conductivity and relative permittivity, the underwater magnetic coupled resonant wireless power transfer (UMCR-WPT) systems require precise modeling and parameter identification to address dynamic operational challenges. According to the impact of the cross-connected capacitance between the two coils, this paper develops an improved mutual inductance model for UMCR-WPT systems to address variations in mutual inductance and cross-connected capacitance caused by relative coil displacement, as well asreal-time load fluctuations and abrupt resistance changes due to load disturbances during charging. It is essential to acquire the system's operational parameters. The common practice utilizes communication modules to measure parameters through wireless communication between the primary and secondary sides of systems. However, for UMCR-WPT systems, signal transmission conditions in underwater environments are significantly harsher than in air, making them prone to transmission delays, electromagnetic interference, communication security risks, and signal distortion. Current parameter identification methods have the following limitations. (1) Complex circuitry and control mechanisms increase receiver-side volume, raise costs, reduce flexibility, and lower reliability. (2) Relianceon communication methods contradicts the high difficulty of underwater communication. (3) Predominant applicability to aerial wireless power transfer systems, rendering them unsuitable for complex underwater physical environments. Therefore, this study proposes a multi-parameter joint identification method based on the cross-connected capacitance effect in the UMCR-WPT systems. The presented method only requires a single measurement of the transmitter-side voltage and current. It can achieve online joint identification of mutual inductance, cross-connected capacitance, and load resistance through a hybrid genetic algorithm-differential evolution (GA-DE) algorithm. Experimental results show that the maximum identification errors are 2.62%, 4.10%, and 4.38% for mutual inductance, cross-connected capacitance, and load resistance under varying coil coupling and load conditions. The maximum deviations in output power and efficiency are approximately 4.451% and 5.15%, respectively, demonstrating the effectiveness of the proposed multi-parameter identification method. The following conclusions can be drawn. (1) The proposed parameter identification strategy can be effectively implemented on the established experimental platform. (2) The mathematical model of the UMCR-WPT system based on the cross-connected capacitance effect exhibits goodagreement with the efficiency characteristics of the experimental platform. (3) The efficiency improvement of UMCR-WPT systems should focus on reducing inverter and coil losses.
刘旭, 钟敬, 荣灿灿, 夏晨阳. 考虑水下跨接电容效应的水下磁耦合谐振式无线电能传输系统多参数辨识方法[J]. 电工技术学报, 2026, 41(2): 374-388.
Liu Xu, Zhong Jing, Rong Cancan, Xia Chenyang. Multiple Parameters Identification Method with Considering the Span Capacitor Effect in the Underwater Magnetic Coupled Resonant Wireless Power Transfer System. Transactions of China Electrotechnical Society, 2026, 41(2): 374-388.
[1] Zhou Jing, Yao Pengzhi, Chen Yanqing, et al.Design considerations for a self-latching coupling structure of inductive power transfer for autonomous under- water vehicle[J]. IEEE Transactions on Industry Applications, 2021, 57(1): 580-587. [2] Xu Han, Zheng Rong, Yang Bo, et al.Inductive wireless power transfer for autonomous underwater vehicles: a comprehensive review of technological advances and challenges[J]. Journal of Marine Science & Engineering, 2025, 13(10): 1855. DOI: 10.3390/jmse 13101855. [3] 张波, 疏许健, 吴理豪, 等. 无线电能传输技术亟待解决的问题及对策[J]. 电力系统自动化, 2019, 43(18): 1-12. Zhang Bo, Shu Xujian, Wu Lihao, et al.Problems of wireless power transmission technology urgent to be solved and corresponding countermeasures[J]. Auto- mation of Electric Power Systems, 2019, 43(18): 1-12. [4] Zhang Zhen, Pang Hongliang, Georgiadis A, et al.Wireless power transfer: an overview[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1044-1058. [5] 闫争超, 胡谦宇, 赵晨旭, 等. 水下航行器感应式无线电能传输技术研究综述[J]. 中国电机工程学报, 2023, 43(24): 9668-9682. Yan Zhengchao, Hu Qianyu, Zhao Chenxu, et al.Review on inductive wireless power transfer tech- nology for underwater vehicles[J]. Proceedings of the CSEE, 2023, 43(24): 9668-9682. [6] Zeng Yingqin, Rong Cancan, Lu Conghui, et al.Misalignment insensitive wireless power transfer system using a hybrid transmitter for autonomous underwater vehicles[J]. IEEE Transactions on Indu- stry Applications, 2021, 58(1): 1298-1306. [7] 李泽松. 基于电磁感应原理的水下非接触式电能传输技术研究[D]. 杭州: 浙江大学, 2010. Li Zesong.Underwater contactless power transmission based on electromagnetic induction[D]. Hangzhou: Zhejiang University, 2010. [8] 王得安, 张剑韬, 朱春波. 海洋环境对水下无线电能传输系统的影响机理研究进展[J]. 电工技术学报, 2025, 40(3): 653-675. Wang De’an, Zhang Jiantao, Zhu Chunbo, et al.Review of progress in the study of marine environ- ment effects on underwater wireless power transfer systems[J]. Transactions of China Electrotechnical Society, 2025, 40(3): 653-675. [9] 吉莉, 张家琦, 张江洪. 一种恒流/恒压输出自切换的电场耦合式无线电能传输系统[J]. 电工技术学报, 2025, 40(24): 7879-7890. Ji Li, Zhang Jiaqi, Zhang Jianghong.A capacitive wireless power transfer system with self-adaptive output switching between constant current and constant voltage[J]. Transactions of China Electro- technical Society, 2025, 40(24): 7879-7890. [10] 戴欣, 夏梓壹, 犹安红. 多激励端WPT系统基于模型逆的输出控制[J]. 中国电机工程学报, 2022, 42(20): 7319-7331. Dai Xin, Xia Ziyi, You Anhong.Model-inverse-based output control of the multi-excitation-unit WPT system[J]. Proceedings of the CSEE, 2022, 42(20): 7319-7331. [11] Hu Jianghao, Zhao Jiankang, Cui Chao.A wide charging range wireless power transfer control system with harmonic current to estimate the coupling coefficient[J]. IEEE Transactions on Power Elec- tronics, 2020, 36(5): 5082-5094. [12] Zheng Peikun, Lei Wanjun, Liu Fenghua, et al.Primary control strategy of magnetic resonant wireless power transfer based on steady-state load identification method[C]//2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 2018: 1-5. [13] 白龙雷, 孙良顺, 马智勇, 等. 基于原边监测的水下WPT系统参数识别技术研究[J]. 中国电机工程学报, 2025, 45(6): 2358-2367. Bai Longlei, Sun Liangshun, Ma Zhiyong, et al.Research on parameter identification technology of underwater WPT system based on transmission side monitoring[J]. Proceedings of the CSEE, 2025, 45(6): 2358-2367. [14] Yin Jian, Lin Deyan, Parisini T, et al.Front-end monitoring of the mutual inductance and load resistance in a series-series compensated wireless power transfer system[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7339-7352. [15] Liu Yuanyuan, Feng Hongwei.Maximum efficiency tracking control method for WPT system based on dynamic coupling coefficient identification and impedance matching network[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(4): 3633-3643. [16] Wang Zhihui, Li Yupeng, Sun Yue, et al.Load detection model of voltage-fed inductive power transfer system[J]. IEEE Transactions on Power Electronics, 2013, 28(11): 5233-5243. [17] 李小飞, 蒋光利, 李志恒, 等. 基于互感与负载识别的AGV无线电能传输系统闭环恒流与效率优化控制方法[J]. 电工技术学报, 2025, 40(14): 4418-4430. Li Xiaofei, Jiang Guangli, Li Zhiheng, et al.A closed- loop constant current and efficiency optimization control method for AGV wireless power transfer system based on mutual inductance and load identi- fication[J]. Transactions of China Electrotechnical Society, 2025, 40(14): 4418-4430. [18] Guo Yanjie, Zhang Yuwang, Li Shufan, et al.Load parameter joint identification of wireless power transfer system based on the DC input current and phase-shift angle[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10542-10553. [19] 刘旭, 宋翔昱, 原熙博, 等. 一种利用可切换补偿电容的三线圈无线电能传输系统互感识别及效率优化方法[J]. 中国电机工程学报, 2022, 42(22): 8309-8320. Liu Xu, Song Xiangyu, Yuan Xibo, et al.A mutual inductance identification and efficiency optimization method for the three-coil wireless power transfer system by utilizing switchable compensation capa- citor[J]. Proceedings of the CSEE, 2022, 42(22): 8309-8320. [20] Liu Xu, Jin Daliang, Ji Hongxin, et al.Research on mutual inductance identification and efficiency optimization of the three-coil wireless power transfer systems with switchable relay coil[J]. IEEE Transa- ctions on Power Electronics, 2024, 39(5): 6492-6503. [21] Sheng Xuerui, Shi Liming.Mutual inductance and load identification method for inductively coupled power transfer system based on auxiliary inverter[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1533-1541. [22] Su Yugang, Chen Long, Wu Xueying, et al.Load and mutual inductance identification from the primary side of inductive power transfer system with parallel- tuned secondary power pickup[J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9952-9962. [23] Dai Ruimin, Zhou Wei, Chen Yonghong, et al.Pulse density modulation based mutual inductance and load resistance identification method for wireless power transfer system[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9933-9943. [24] Bai Longlei, Ye Ju, Ma Zhiyong, et al.Parameter identification method for underwater vehicle WPT system based on primary-side detection[J]. IEEE Transactions on Transportation Electrification, 2025, 11(4): 8689-8701. [25] 郭彦杰, 张玉旺, 王丽芳, 等. 无线电能传输系统接收端多参数联合辨识[J]. 中国电机工程学报, 2022, 42(20): 7403-7415. Guo Yanjie, Zhang Yuwang, Wang Lifang, et al.Joint identification of multiple parameters in the secondary side of wireless power transfer systems[J]. Pro- ceedings of the CSEE. 2022, 42(20): 7403-7415. [26] 孔德乐, 赵晋斌, 毛玲, 等. 无线电能传输系统中利用匝间电容分段补偿线圈的设计与分析[J]. 电工技术学报, 2025, 40(12): 3803-3814. Kong Dele, Zhao Jinbin, Mao Ling, et al.design and analysis of segmental compensation coils utilizing inter-turn capacitance in wireless power transfer systems[J]. Transactions of China Electrotechnical Society, 2025, 40(12): 3803-3814. [27] 渠慧玲. 电感线圈分布电容建模及其对电感性能影响研究[D]. 北京: 中国石油大学(北京), 2021. Qu Huiling.Research on inductor coil distributed capacitance modeling and its influence on inductance performance[D]. Beijing: China University of Petroleum (Beijing), 2021. [28] Huang Mo, Lu Yan, Martins R P.A reconfigurable bidirectional wireless power transceiver for battery- to-battery wireless charging[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7745-7753. [29] 程豪, 周玮, 张泽恒, 等. 一种基于平面-曲面解耦线圈的旋转机构无线电能与信号并行传输技术[J]. 电工技术学报, 2025, 40(14): 4395-4405. Cheng Hao, Zhou Wei, Zhang Zeheng, et al.A parallel transmission technology for wireless power and signal in a rotating mechanism based on plane- curved decoupling coil[J]. Transactions of China Electrotechnical Society, 2025, 40(14): 4395-4405. [30] Luo Bo, Wu Huan, Wang Mengyao, et al.Front-end parameter identification method based on Adam-W optimization algorithm for underwater wireless power transfer system[J]. IEEE Transactions on Power Electronics, 2025, 40(4): 6307-6318. [31] 贾亚辉, 王智慧, 肖静, 等. 磁耦合无线电能传输系统宽范围零电压开关实现方法[J]. 电工技术学报, 2024, 39(22): 6952-6964. Jia Yahui, Wang Zhihui, Xiao Jing, et al.imple- mentation method of wide range zero voltage switching in magnetic coupling wireless power transfer system[J]. Transactions of China Electro- technical Society, 2024, 39(22): 6952-6964. [32] Cai J, Wu X, Sun P, et al.Design of constant-voltage and constant-current output modes of double-sided LCC inductive power transfer system for variable coupling conditions[J]. IEEE Transactions on Power Electronics, 2024, 39(1): 1676-1689. [33] 李振杰, 白玉鸿, 刘一琦, 等. 基于IPSO-BP算法的WPT系统结构参数优化方法[J/OL]. 电源学报, 1-12[2025-05-09]. http://kns.cnki.net/kcms/detail/12.1420.TM.20240426.0903.004.html. Li Zhenjie, Bai Yuhong, Liu Yiqi, et al.et al. Optimization method of WPT system structural parameters based on the IPSO-BP algorithm[J]. Journal of Power Sources, 1-12[2025-05-09]. http://kns.cnki.net/kcms/detail/12.1420.TM.20240426.0903.004.html. [34] 闫荣格, 马文喆, 杨庆新, 等. 磁耦合谐振式无线电能传输系统功效失步优化[J]. 中国电机工程学报, 2023, 43(4): 1517-1525. Yan Rongge, Wenzhe Ma, Qingxin Yang, et al.Optimize on power-efficiency unsynchronization of wireless power transfer via magnetic resonance coupling[J]. Proceedings of the CSEE, 2023, 43(4): 1517-1525. [35] 夏涛, 吴翟铮, 张小亮, 等. 基于互感动态识别的波光互补装置水下无线电能传输控制策略研究[J]. 太阳能学报, 2024, 45(12): 667-674. Xia Tao, Wu Zhaizheng, Zhang Xiaoliang, et al.Research on the control strategy of underwater wireless energy transmission of wave-optical com- plementary device based on mutual sensing dynamic identification[J]. Acta Energiae Solaris Sinica, 2024, 45(12): 667-674. [36] 常雨芳, 马超, 张晓柯, 等. 改进麻雀搜索算法的WPT系统参数识别方法[J]. 电机与控制学报, 2024, 28(12): 148-160. Chang Yufang, Ma Chao Zhang Xiaoke, et al. Parameter identification of WPT system based on improved sparrow search algorithm[J]. Electric Machines and Control, 2024, 28(12): 148-160.