Abstract:To achieve continuous and real-time stress optimization control of the dual active bridge converter under power transmission or voltage fluctuations, it is crucial to study the patterns between modes and among optimization control variables in modes. However, current research needs depth, and functional expressions of stress optimization control variables are complex. This paper employs genetic algorithms for stress optimization. The intrinsic laws among the optimization variables in each mode are elucidated through the optimization results. An innovative trigonometric function polar coordinate method is adopted to derive the corresponding optimization control variable function expressions. Firstly, based on waveform equivalence simplification and the principle of waveform and energy transmission, the four locally optimal modes are identified from the twelve working modes, which exhibit low stress or effective values in different power ranges. It reduces the number of modes that require optimization, which reduces the optimization burden. Secondly, the stress of the four modes is optimized, and the optimization results are compared to determine the laws governing the optimization variables in different power ranges with different k values. Through systematic analysis, the laws of four local optimal operating modes in the low/high power section can be obtained. Thirdly, the expressions with optimization variables are obtained by substituting these laws into the corresponding power transfer expression. The optimized variables are converted into trigonometric polar coordinate forms through the trigonometric function polar coordinate method. The expressions for the minimum current stress function and its optimization control variables are obtained by substituting optimized variables into the stress expression to obtain the minimum stress value. Compared with the current stress in the full power range for four local operating modes, the optimal mode and optimal control variables for each power segment across the entire power range are selected, thereby achieving global optimization control. The innovations in this study are presented. (1) Analyze and contrast the current stress optimization results for different voltage adjustment rates k to discern the laws among the optimized variables across the four local optimal modes in various power ranges. (2) The power constraint and trigonometric polar coordinate methods are utilized to derive a precise expression for the optimal stress control variables. The globally optimal control variables are selected by comparing the current stress of four local optimal modes. The following conclusions can be drawn. (1) Under the buck operation conditions of stress optimization for both forward and reverse power transfer across the entire power range, mode 1.1 is globally optimal during low forward transmission power when 0<P<k2(1-k); mode 1.4 becomes globally optimal during high forward transmission power in the range k2(1-k)<P<k/2. Similarly, for low reverse transmission power, mode 2.1 is globally optimal in the range k2(k-1)<P<0, and mode 2.3 becomes globally optimal during high reverse transmission power when -k/2<P<k2(k-1). (2) The stress optimization control under TPS modulation improves the efficiency of the DAB converter compared to other modulation strategies. Notably, it exhibits a significant enhancement under the low-power segment and high-voltage mismatch scenarios.
张来勇, 涂春鸣, 肖凡, 刘贝, 陈燕东. 双有源桥变换器电流应力的本征规律分析及其优化控制[J]. 电工技术学报, 2025, 40(12): 3977-3993.
Zhang Laiyong, Tu Chunming, Xiao Fan, Liu Bei, Chen Yandong. Intrinsic Law Analysis and Optimization Control of Current Stress in Dual Active Bridge Converter. Transactions of China Electrotechnical Society, 2025, 40(12): 3977-3993.
[1] 宋强, 赵彪, 刘文华, 等. 智能直流配电网研究综述[J]. 中国电机工程学报, 2013, 33(25): 9-19. Song Qiang, Zhao Biao, Liu Wenhua, et al.An overview of research on smart DC distribution power network[J]. Proceedings of the CSEE, 2013, 33(25): 9-19. [2] 曾嵘, 赵宇明, 赵彪, 等. 直流配用电关键技术研究与应用展望[J]. 中国电机工程学报, 2018, 38(23): 6790-6801. Zeng Rong, Zhao Yuming, Zhao Biao, et al.A prospective look on research and application of DC power distribution technology[J]. Proceedings of the CSEE, 2018, 38(23): 6790-6801. [3] 谷庆, 袁立强, 聂金铜, 等. 基于开关组合规律的双有源桥DC-DC变换器传输功率特性[J]. 电工技术学报, 2017, 32(13): 69-79. Gu Qing, Yuan Liqiang, Nie Jintong, et al.Transmission power characteristics of dual-active-bridge DC-DC converter based on the switching combination rules[J]. Transactions of China Elec-trotechnical Society, 2017, 32(13): 69-79. [4] 黄匀飞, 钟启濠, 欧阳有鹏, 等. 双有源桥变换器拓扑结构与控制策略研究综述[J]. 电源学报, 2024, 22(4): 53-65. Huang Yunfei, Zhong Qihao, Ouyang Youpeng, et al.Overview of topologies and control strategies for dual-active-bridge converter[J]. Journal of Power Supply, 2024, 22(4): 53-65. [5] 李子欣, 高范强, 赵聪, 等. 电力电子变压器技术研究综述[J]. 中国电机工程学报, 2018, 38(5): 1274-1289. Li Zixin, Gao Fanqiang, Zhao Cong, et al.Research review of power electronic transformer techno-logies[J]. Proceedings of the CSEE, 2018, 38(5): 1274-1289. [6] 王攀攀, 徐泽涵, 王莉, 等. 基于三重移相的双有源桥DC-DC变换器效率与动态性能混合优化控制策略[J]. 电工技术学报, 2022, 37(18): 4720-4731. Wang Panpan, Xu Zehan, Wang Li, et al.A hybrid optimization control strategy of efficiency and dynamic performance of dual-active-bridge DC-DC converter based on triple-phase-shift[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4720-4731. [7] 竺庆茸. 双有源桥DC-DC的调制方式的研究[J]. 电气技术, 2020, 21(7): 53-56, 68. Zhu Qingrong.A study of dual active bridge DC-DC modulation mode[J]. Electrical Engineering, 2020, 21(7): 53-56, 68. [8] 康薇, 肖飞, 任强, 等. 双有源桥DC-DC变换器三移相调制及其死区效应分析和补偿[J]. 电工技术学报, 2024, 39(6): 1907-1922. Kang Wei, Xiao Fei, Ren Qiang, et al.Three-phase shift modulation of DC-DC converter with dual active bridges and its dead-time effect analysis and com-pensation[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1907-1922. [9] 刘红晓, 祝丽花, 张俊杰. 宽频下典型高频变压器铁心损耗计算与分析[J]. 电力电子技术, 2022, 56(12): 1-4, 8. Liu Hongxiao, Zhu Lihua, Zhang Junjie.Typical high-frequency transformer core loss calculation and analysis under wide frequency[J]. Power Electronics, 2022, 56(12): 1-4, 8. [10] 孙凯, 卢世蕾, 易哲嫄, 等. 面向电力电子变压器应用的大容量高频变压器技术综述[J]. 中国电机工程学报, 2021, 41(24): 8531-8546. Sun Kai, Lu Shilei, Yi Zheyuan, et al.A review of high-power high-frequency transformer technology for power electronic transformer applications[J]. Proceedings of the CSEE, 2021, 41(24): 8531-8546. [11] Hebala O M, Aboushady A A, Ahmed K H, et al.Generic closed-loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization[J]. IEEE Transactions on Indu-strial Electronics, 2019, 66(6): 4468-4478. [12] Shao Shuai, Jiang Mingming, Ye Weiwen, et al.Optimal phase-shift control to minimize reactive power for a dual active bridge DC-DC converter[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10193-10205. [13] 关维德, 李涛, 钟健, 等. 电机控制器直流侧前置双有源桥DC-DC变换器的模型预测与应力优化混合控制[J]. 电工技术学报, 2024, 39(12): 3787-3801. Guan Weide, Li Tao, Zhong Jian, et al.Hybrid control of model prediction and current stress optimization for dual active bridge DC-DC converter in motor drive systems[J]. Transactions of China Electro-technical Society, 2024, 39(12): 3787-3801. [14] 任强, 艾胜. 全工况范围的DAB三自由度优化控制策略[J]. 中国电机工程学报, 2020, 40(11): 3613-3621. Ren Qiang, Ai Sheng.A three degree freedom optimal control strategy of dual-active-bridge converters for full range operations[J]. Proceedings of the CSEE, 2020, 40(11): 3613-3621. [15] 王仁龙, 李永建, 李珊瑚, 等. 双有源桥变换器电流应力优化的双重移相调制方式[J]. 电源学报, 2023, 21(1): 35-44. Wang Renlong, Li Yongiian, Li Shanhu, et al.Improved dual phase-shift modulation mode based on current stress optimization of dual active bridge DC-DC converter[J]. Journal of Power Supply, 2023, 21(1): 35-44. [16] Li Jia, Luo Quanming, Mou Di, et al.A hybrid five-variable modulation scheme for dual-active-bridge converter with minimal RMS current[J]. IEEE Transactions on Industrial Electronics, 2022, 69(1): 336-346. [17] Gu Qing, Yuan Liqiang, Nie Jintong, et al.Current stress minimization of dual-active-bridge DC-DC converter within the whole operating range[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(1): 129-142. [18] Tong Anping, Hang Lijun, Li Guojie, et al.Modeling and analysis of a dual-active-bridge-isolated bidi-rectional DC/DC converter to minimize RMS current with whole operating range[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 5302-5316. [19] 王小平, 曹立明. 遗传算法:理论、应用与软件实现[M]. 西安: 西安交通大学出版社, 2002. [20] 郭华越, 张兴, 赵文广, 等. 扩展移相控制的双有源桥DC-DC 变换器的优化控制策略[J]. 中国电机工程学报, 2019, 39(13): 3889-3898. Guo Huayue, Zhang Xing, Zhao Wenguang, et al.Optimal control strategy of dual active bridge DC-DC converters with extended-phase-shift control[J]. Pro-ceedings of the CSEE, 2019, 39(13): 3889-3898 [21] 曾进辉, 孙志峰, 雷敏, 等. 双重移相控制的双主动全桥变换器全局电流应力分析及优化控制策略[J]. 电工技术学报, 2019, 34(12): 2507-2518. Zeng Jinhui, Sun Zhifeng, Lei Min, et al.Global current stress analysis and optimal control strategy of dual-active full bridge converter based on dual phase shift control[J]. Transactions of China Electro-technical Society, 2019, 34(12): 2507-2518.