1. State Key Laboratory of Offshore Wind Power Equipment and High-Efficient Utilization Wind Energy Hunan University Changsha 410082 China 2. Institute of Electrical Engineering China Academy of Sciences Beijing 100190 China
Abstract:With the rapid development of the global economy, offshore wind power generation technology has been advancing towards field group scale and industrialization, becoming a research hotspot in international renewable energy. However, to reduce the economic costs associated with deep-sea wind power technology and enhance the efficient of wind energy capture and utilization, the capacity of wind turbines has been gradually upgraded to 10 MW and above. This trend towards large capacity has consequently led to increased weight and volume of wind turbines, complicating offshore transportation, lifting, operation and maintenance, which limits further development of offshore wind power technology. Moreover, the significant volatility and intermittency of offshore wind power contribute to increased grid penetration issues, difficulties in large-scale grid connections, and a notable phenomenon of wind curtailment. Furthermore, the non-stationary wind power can cause grid voltage fluctuations, flicker, frequency fluctuations, harmonics and other power quality problems, affecting the stable operation of the grid. To address these problems, Hunan University's wind power generation team proposed an innovative integrated technology for hydrogen production through offshore superconducting wind power generation. This innovative system utilizes water electrolysis to locally consume offshore wind energy, with the produced liquid hydrogen being transported to land via ships or pipelines for comprehensive utilization. Additionally, a liquid hydrogen circulation refrigeration system provides a stable low-temperature environment for superconducting wind turbines, significantly reducing platform volume and weight and ensuring the reliable operation of the integrated system. The article provides an overview of recent development in HTS wind turbine technology and offshore wind power hydrogen production technology, both domestically and internationally. It analyzes the key structures and feasibility of the proposed innovative integrated system, highlighting how it compares to traditional technologies. Additionally, the article explores recent advancements in offshore wind power generation and transmission technologies. The discussion then shifts to the benefits of the proposed innovative technology in comparison to other existing technologies and schemes. It summarizes the advantages of integrating hydrogen production and offshore superconducting wind power generation, analyzes the variability of superconducting wind turbines output power and the limitations of current converter topology control strategies, and proposes the key technologies of designing superconducting wind turbines converter topology with efficient energy transfer capability and designing a superconducting wind power system friendly control strategy. For the future development of the integrated system, an energy island system plan that is integrated with renewable energy development is proposed. This plan is based on the operational principles of each sub-structure and aims to harness the efficient synergy of renewable energies. Research will focus on determining the appropriate ratios for various energy production and conversion devices, which will optimize the configuration of multi-energy complementarity. This approach aims to establish an integrated energy system that reduces the standby capacity required by the system’s various equipment. Furthermore, this initiative will promote the coupling of the power with renewable energy systems, facilitating the synergistic development of electric power and green hydrogen. This strategy will improve the optimized configuration of the energy supply system and establish a common technological framework for large-scale superconducting wind power hydrogen production technology.
申刘飞, 翟雨佳, 吴星徵, 黄晟, 黄守道. 海上超导风电制氢一体化研究进展与发展趋势[J]. 电工技术学报, 2025, 40(11): 3362-3380.
Shen Liufei, Zhai Yujia, Wu Xingzheng, Huang Sheng, Huang Shoudao. Progress and Development Trend of Integrated Research on Hydrogen Production from Offshore Superconducting Wind Power. Transactions of China Electrotechnical Society, 2025, 40(11): 3362-3380.
[1] 舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672. Shu Yinbiao, Zhao Yong, Zhao Liang, et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672. [2] 彭也伦, 黄守道, 张文娟, 等. 一种基于电流滞环控制的模块化多电平变流器调制策略[J]. 电工技术学报, 2016, 31(17): 94-101. Peng Yelun, Huang Shoudao, Zhang Wenjuan, et al.A modulation strategy based on current hysteresis control for modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 94-101. [3] 赵国亮, 陈维江, 邓占锋, 等. 柔性低频交流输电关键技术及应用[J]. 电力系统自动化, 2022, 46(15): 1-10. Zhao Guoliang, Chen Weijiang, Deng Zhanfeng, et al.Key technologies and application of flexible low-frequency AC transmission[J]. Automation of Electric Power Systems, 2022, 46(15): 1-10. [4] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771. Chi Yongning, Liang Wei, Zhang Zhankui, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771. [5] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11. Kang Chongqing, Yao Liangzhong.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11. [6] 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-135. Cai Guowei, Kong Lingguo, Xue Yu, et al.Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135. [7] 肖立业, 刘向宏, 王秋良, 等. 超导材料及其应用现状与发展前景[J]. 中国工业和信息化, 2018(8): 30-37. Xiao Liye, Liu Xianghong, Wang Qiuliang, et al.Superconducting materials and their application status and development prospect[J]. China Industry & Information Technology, 2018(8): 30-37. [8] 严陆光, 周孝信, 甘子钊, 等. 关于发展高温超导输电的建议[J]. 电工电能新技术, 2014, 33(1): 1-9. Yan Luguang, Zhou Xiaoxin, Gan Zizhao, et al.Proposal for development of high-temperature superconducting power transmission[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(1): 1-9. [9] 白利锋, 张平祥. 高温超导电机研究进展[J]. 低温物理学报, 2016, 38(5): 1-6. Bai Lifeng, Zhang Pingxiang.The development of HTS motors[J]. Chinese Journal of Low Temperature Physics, 2016, 38(5): 1-6. [10] Mijatovic N, Abrahamsen A B, Træholt C, et al.Superconducting generators for wind turbines: design considerations[J]. Journal of Physics: Conference Series, 2010, 234(3): 032038. [11] Snitchler G, Gamble B, King C, et al.10 MW class superconductor wind turbine generators[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1089-1092. [12] Maples B, Hand M, Musial W.Comparative assessment of direct drive high temperature superco-nducting generators in multi-megawatt class wind turbines[R]. Golden, CO (United States) National Renewable Energy Laboratory (NREL), 2010. [13] Hosseini S E, Wahid M A.Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850-866. [14] 田甜, 李怡雪, 黄磊, 等. 海上风电制氢技术经济性对比分析[J]. 电力建设, 2021, 42(12): 136-144. Tian Tian, Li Yixue, Huang Lei, et al.Comparative analysis on the economy of hydrogen production technology for offshore wind power consumption[J]. Electric Power Construction, 2021, 42(12): 136-144. [15] 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462. Li Zheng, Zhang Rui, Sun Hexu, et al.Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462. [16] Perveen R, Kishor N, Mohanty S R.Off-shore wind farm development: present status and challenges[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 780-792. [17] Barthelmie R J, Frandsen S T, Nielsen M N, et al.Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm[J]. Wind Energy, 2007, 10(6): 517-528. [18] Kooijman H J T, De Noord M, Uyterlinde M A, et al. Large scale offshore wind energy in the north sea—a technology and policy perspective[J]. Wind Engineering, 2004, 28(2): 143-156. [19] Breton S P, Moe G.Status, plans and technologies for offshore wind turbines in Europe and North America[J]. Renewable Energy, 2009, 34(3): 646-654. [20] Sun Xiaojing, Huang Diangui, Wu Guoqing.The current state of offshore wind energy technology development[J]. Energy, 2012, 41(1): 298-312. [21] Apostolaki-Iosifidou E, McCormack R, Kempton W, et al. Transmission design and analysis for large-scale offshore wind energy development[J]. IEEE Power and Energy Technology Systems Journal, 2019, 6(1): 22-31. [22] Crivellari A, Cozzani V.Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to-liquid conversion[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2936-2953. [23] Quarton C J, Samsatli S.Power-to-gas for injection into the gas grid: what can we learn from real-life projects, economic assessments and systems modelling?[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 302-316. [24] Bahirat H J, Mork B A.Operation of DC series-parallel connected offshore wind farm[J]. IEEE Transactions on Sustainable Energy, 2019, 10(2): 596-603. [25] 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[J]. 中国水利, 2021(6): 1-38. Xinhua News Agency. The outline of the 14th Five-Year Plan(2021—2025) for national economic and social development and the long-range objectives through the year 2035 of P. R. China[J]. China Water Resources, 2021(6): 1-38. [26] 唐征歧, 周彬, 王凯. 海上风电发展及其技术研究概述[J]. 太阳能, 2018(6): 11-16, 48. Tang Zhengqi, Zhou Bin, Wang Kai.Review of development of offshore wind power and its technology research[J]. Solar Energy, 2018(6): 11-16, 48. [27] Shin H, Dam P T, Jung K J, et al.Model test of new floating offshore wind turbine platforms[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5(2): 199-209. [28] K Søren.The Economics of Wind Energy[M]. Brussels: European Wind Energy Association, 2015. [29] 张佳丽, 李少彦. 海上风电产业现状及未来发展趋势展望[J]. 风能, 2018(10): 48-52. Zhang Jiali, Li Shaoyan.Present situation and future development trend of offshore wind power industry[J]. Wind Energy, 2018(10): 48-52. [30] Heronemus W E.Pollution-free energy from offshore winds[C]//8th Annual Conference and Exposition, Marine Technology Society, 1972, Washington, DC, USA, 1972. [31] Komiyama R, Fujii Y.Large-scale integration of offshore wind into the Japanese power grid[J]. Sustainability Science, 2021, 16(2): 429-448. [32] Igwemezie V, Mehmanparast A, Kolios A.Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures-a review[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 181-196. [33] Hannon M, Topham E, Dixon J, et al.Offshore wind, ready to float? Global and UK trends in the floating offshore wind market[J]. 2019. [34] Musial W, Beiter P, Spitsen P, et al.2018 offshore wind technologies market report[R]. Golden, CO United States: National Renewable Energy Laboratory (NREL), 2019. [35] Henderson A R, Witcher D.Floating offshore wind energy—a review of the current status and an assessment of the prospects[J]. Wind Engineering, 2010, 34(1): 1-16. [36] American Bureau of Shipping. Rules for building and classing mobile offshore drilling units: TX 77060 USA[S]. Houston, Texas, USA: ABO Shipping Publishing, 2008. [37] Collu M, Maggi A, Gualeni P, et al.Stability requirements for floating offshore wind turbine (FOWT) during assembly and temporary phases: Overview and application[J]. Ocean Engineering, 2014, 84: 164-175. [38] Chan C M.Mooring system design for a floating wind farm in very deep water-European Wind Energy Master Thesis[D]. Trondheim: Norwegian University of Science and Technology, 2019. [39] Pereyra B.Design of a counter weight suspension system for the Tetraspar floating offshore wind turbine[D]. Trondheim: Norwegian University of Science and Technology, 2018. [40] Taninoki R, Abe K, Azuma D, et al.Dynamic cable system for floating offshore wind power generation[J]. SEI Technical Review, 2017, 84(53-58): 146. [41] Duan Fei, Hu Zhiqiang, Wang Jin.Investigation of the VIMs of a spar-type FOWT using a model test method[J]. Journal of Renewable and Sustainable Energy, 2016, 8(6): 063301. [42] Bae Y H, Kim M H.Rotor-floater-tether coupled dynamics including second-order sum-frequency wave loads for a mono-column-TLP-type FOWT (floating offshore wind turbine)[J]. Ocean Engineering, 2013, 61: 109-122. [43] Tran T T, Kim D H.The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions[J]. Journal of Mechanical Science and Technology, 2015, 29(2): 549-561. [44] Farrugia R, Sant T, Micallef D.A study on the aerodynamics of a floating wind turbine rotor[J]. Renewable Energy, 2016, 86: 770-784. [45] Duan Fei, Hu Zhiqiang, Niedzwecki J M.Model test investigation of a spar floating wind turbine[J]. Marine Structures, 2016, 49: 76-96. [46] Song Xiaowei, Bührer C, Brutsaert P, et al.Ground testing of the world’s first MW-class direct-drive superconducting wind turbine generator[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 757-764. [47] Shafaie R, Kalantar M.Comparison of theoretical and numerical electromagnetic modeling for HTS synchronous generator[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(1): 5200107. [48] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466. Wang Xifan, Wei Xiaohui, Ning Lianhui, et al.Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466. [49] Li Jing, Zhang Xiaoping.Small signal stability of fractional frequency transmission system with offshore wind farms[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1538-1546. [50] Meng Yongqing, Liu Bo, Luo Huiyong, et al.Control scheme of hexagonal modular multilevel direct converter for offshore wind power integration via fractional frequency transmission system[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(1): 168-180. [51] Liu Shenquan, Wang Xifan, Meng Yongqing, et al.A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2111-2121. [52] Nick W, Frank M, Klaus G, et al.Operational experience with the world’s first 3600 rpm 4 MVA generator at siemens[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2030-2033. [53] Yanamoto T, Izumi M, Umemoto K, et al.Load test of 3-MW HTS motor for ship propulsion[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(8): 5204305. [54] Lewis C, Muller J.A direct drive wind turbine HTS generator[C]//2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 2007: 1-8. [55] Song Xiaowei, Bührer C, Brutsaert P, et al.Designing and basic experimental validation of the world’s first MW-class direct-drive superconducting wind turbine generator[J]. IEEE Transactions on Energy Conversion, 2019, 34(4): 2218-2225. [56] Pienkos J.Cooling, thermal design, and stability of a superconducting motor[D]. Tallahassee: The Florida State University, 2009. [57] Chen Biao, Gu Guobiao, Zhang Guoqiang, et al.Analysis and design of cooling system in high temperature superconducting synchronous machines[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1557-1560. [58] Kim Y, Ki T, Kim H, et al.High temperature superconducting motor cooled by on-board cryocooler[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2217-2220. [59] Schiferl R, Flory A, Livoti W C, et al.High temperature superconducting synchronous motors: economic issues for industrial applications[C]//2006 Record of Conference Papers - IEEE Industry Applications Society 53rd Annual Petroleum and Chemical Industry Conference, Philadelphia, PA, USA, 2006: 1-9. [60] 李岩, 冯俊杰, 卢毓欣, 等. 大容量远海风电柔性直流送出关键技术与展望[J]. 高电压技术, 2022, 48(9): 3384-3393. Li Yan, Feng Junjie, Lu Yuxin, et al.Key technologies and prospects of VSC-HVDC for large-capacity and long-distance offshore wind power transmission[J]. High Voltage Engineering, 2022, 48(9): 3384-3393. [61] 王锡凡, 王碧阳, 王秀丽, 等. 面向低碳的海上风电系统优化规划研究[J]. 电力系统自动化, 2014, 38(17): 4-13, 19. Wang Xifan, Wang Biyang, Wang Xiuli, et al.Study of optimal planning methods for offshore wind power systems oriented low-carbon[J]. Automation of Electric Power Systems, 2014, 38(17): 4-13, 19. [62] 王锡凡, 刘沈全, 宋卓彦, 等. 分频海上风电系统的技术经济分析[J]. 电力系统自动化, 2015, 39(3): 43-50. Wang Xifan, Liu Shenquan, Song Zhuoyan, et al.Technical and economical analysis on offshore wind power system integrated via fractional frequency transmission system[J]. Automation of Electric Power Systems, 2015, 39(3): 43-50. [63] Zhao Menghua, Chen Zhe, Blaabjerg F.Generation ratio availability assessment of electrical systems for offshore wind farms[J]. IEEE Transactions on Energy Conversion, 2007, 22(3): 755-763. [64] Negra N B, Todorovic J, Ackermann T.Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms[J]. Electric Power Systems Research, 2006, 76(11): 916-927. [65] Wang Xifan, Cao Chengjun, Zhou Zhichao.Experiment on fractional frequency transmission system[J]. IEEE Transactions on Power Systems, 2006, 21(1): 372-377. [66] Mohammadi A, Mehrpooya M.A comprehensive review on coupling different types of electrolyzer to renewable energy sources[J]. Energy, 2018, 158: 632-655. [67] Widera B.Renewable hydrogen implementations for combined energy storage, transportation and stationary applications[J]. Thermal Science and Engineering Progress, 2020, 16: 100460. [68] Nguyen T, Abdin Z, Holm T, et al.Grid-connected hydrogen production via large-scale water electrolysis[J]. Energy Conversion and Management, 2019, 200: 112108. [69] Abdin Z, Zafaranloo A, Rafiee A, et al.Hydrogen as an energy vector[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109620. [70] Moriarty P, Honnery D.Intermittent renewable energy: the only future source of hydrogen?[J]. International Journal of Hydrogen Energy, 2007, 32(12): 1616-1624. [71] Chi Jun, Yu Hongmei.Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394. [72] Dutton A G, Bleijs J A M, Dienhart H, et al. Experience in the design, sizing, economics, and implementation of autonomous wind-powered hydrogen production systems[J]. International Journal of Hydrogen Energy, 2000, 25(8): 705-722. [73] Kassem N.Offshore wind farms for hydrogen production subject to uncertainties[C]//International Joint Power Generation Conference Collocated with TurboExpo 2003, Atlanta, Georgia, USA, 2023: 857-864. [74] Bhandari R, Trudewind C A, Zapp P.Life cycle assessment of hydrogen production via electrolysis-a review[J]. Journal of Cleaner Production, 2014, 85: 151-163. [75] Takahashi R, Kinoshita H, Murata T, et al.Output power smoothing and hydrogen production by using variable speed wind generators[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 485-493. [76] García Clúa J G, De Battista H, Mantz R J. Control of a grid-assisted wind-powered hydrogen production system[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5786-5792. [77] Bernal-Agustín J L, Dufo-López R. Hourly energy management for grid-connected wind-hydrogen systems[J]. International Journal of Hydrogen Energy, 2008, 33(22): 6401-6413. [78] Yan Zhuoyong, Gu Weidong.Research on integrated system of non-grid-connected wind power and water-electrolytic hydrogen production[C]//2010 World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China, 2010: 1-4. [79] Ulleberg Ø, Nakken T, Eté A.The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools[J]. International Journal of Hydrogen Energy, 2010, 35(5): 1841-1852. [80] Jepma C J, Schot M.On the economics of offshore energy conversion: smart combinations[J]. Energy Delta Institute, 2017(3): 1-54. [81] Deng Fujin, Chen Zhe.Operation and control of a DC-grid offshore wind farm under DC transmission system faults[J]. IEEE Transactions on Power Delivery, 2013, 28(3): 1356-1363. [82] 张尧翔, 刘文颖, 庞清仑, 等. 高比例风电接入系统光热发电-火电旋转备用优化方法[J]. 电工技术学报, 2022, 37(21): 5478-5489. Zhang Yaoxiang, Liu Wenying, Pang Qinglun, et al.Optimal power spinning reserve method of concentrating solar power and thermal power for high-proportion wind power system[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5478-5489. [83] Kasera J, Chaplot A, Maherchandani J K.Modeling and simulation of wind-PV hybrid power system using Matlab/Simulink[C]//2012 IEEE Students' Conference on Electrical, Electronics and Computer Science, Bhopal, India, 2012: 1-4. [84] Ding Zeyu, Hou Hongjuan, Yu Gang, et al.Performance analysis of a wind-solar hybrid power generation system[J]. Energy Conversion and Management, 2019, 181: 223-234. [85] Zhang Weiping, Maleki A, Rosen M A.A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting[J]. Journal of Cleaner Production, 2019, 241: 117920. [86] Zhang Debao, Liu Junwei, Jiao Shifei, et al.Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II[J]. Energy, 2019, 189: 116121. [87] Yang Yong, Guo Su, Liu Deyou, et al.Operation optimization strategy for wind-concentrated solar power hybrid power generation system[J]. Energy Conversion and Management, 2018, 160: 243-250. [88] Al-Sharafi A, Sahin A Z, Ayar T, et al.Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 33-49. [89] Murat G, Kale C.Techno-economical evaluation of a hydrogen refuelling station powered by wind-PV hybrid power system: a case study for İzmir-Çeşme[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10615-10625. [90] Bačeković I, Poul Alberg Ø.A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb[J]. Energy, 2018, 155: 824-837. [91] Khiareddine A, Ben Salah C, Rekioua D, et al.Sizing methodology for hybrid photovoltaic/wind/ hydrogen/ battery integrated to energy management strategy for pumping system[J]. Energy, 2018, 153: 743-762. [92] 郭怿, 明波, 黄强, 等. 考虑输电功率平稳性的水-风-光-储多能互补日前鲁棒优化调度[J]. 电工技术学报, 2023, 38(9): 2350-2363. Guo Yi, Ming Bo, Huang Qiang, et al.Day-ahead robust optimal scheduling of hydro-wind-PV-storage complementary system considering the steadiness of power delivery[J]. Transactions of China Electro-technical Society, 2023, 38(9): 2350-2363. [93] 陈明昊, 孙毅, 谢志远. 基于双层深度强化学习的园区综合能源系统多时间尺度优化管理[J]. 电工技术学报, 2023, 38(7): 1864-1881. Chen Minghao, Sun Yi, Xie Zhiyuan.The multi-time-scale management optimization method for park integrated energy system based on the bi-layer deep reinforcement learning[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1864-1881. [94] 陈厚合, 丛前, 姜涛, 等. 多能协同的配电网供电恢复策略[J]. 电工技术学报, 2022, 37(3): 610-622, 685. Chen Houhe, Cong Qian, Jiang Tao, et al.Distribution systems restoration with multi-energy synergy[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 610-622, 685. [95] 梁煜东, 陈峦, 张国洲, 等. 基于深度强化学习的多能互补发电系统负荷频率控制策略[J]. 电工技术学报, 2022, 37(7): 1768-1779. Liang Yudong, Chen Luan, Zhang Guozhou, et al.Load frequency control strategy of hybrid power generation system: a deep reinforcement learning—based approach[J]. Transactions of China Electro-technical Society, 2022, 37(7): 1768-1779. [96] Psarros G N, Papathanassiou S A.Internal dispatch for RES-storage hybrid power stations in isolated grids[J]. Renewable Energy, 2020, 147: 2141-2150. [97] Tsai C T, Beza T M, Wu Weibin, et al.Optimal configuration with capacity analysis of a hybrid renewable energy and storage system for an island application[J]. Energies, 2019, 13(1): 8. [98] Donado K, Navarro L, Quintero M C G, et al. HYRES: a multi-objective optimization tool for proper configuration of renewable hybrid energy systems[J]. Energies, 2019, 13(1): 26. [99] Xie Heping, Zhao Zhiyu, Liu Tao, et al.A membrane-based seawater electrolyser for hydrogen generation[J]. Nature, 2022, 612(7941): 673-678.