A Quick Start-Up Method for Surface-Mounted Permanent Magnet Synchronous Motor Based on Hall Position Sensor
Gao Huida1,2, Shi Tingna1,2, Cao Yanfei1,2, Wang Jian2, Yan Yan1,2
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. Zhejiang University Advanced Electrical Equipment Innovation Center Hangzhou 311107 China
Abstract:As the power source of the robotic manipulators, the motors inside the joint servo systems generally start with a load directly and cannot execute position calibration due to the operating conditions. Therefore, the commonly used position acquisition scheme is the Hall position sensor during motor start-up. However, this scheme cannot start the motor with the maximum starting torque, as the Hall position sensor only provides the present sector of the motor rather than the precise angle. The traditional processing method utilizes a square-wave voltage to start up or take the middle value of the Hall sector as the angle input to the motor drive algorithm, thereby obtaining a large torque across the entire angle range of the Hall sector. These methods are simple but lose some torque in the event of a significant deviation in the position estimation. This paper proposes a quick-startup method for surface-mounted permanent magnet synchronous motors (SPMSMs) based on a Hall position sensor. Firstly, the start-up process of different curves of random initial angles is analyzed. The deviation between the actual rotor position and the imprecise estimated position decreases the starting torque, as the Hall sector spans an angle range of 60°. Under these conditions, combined with the field-oriented control (FOC) algorithm and the maximum torque per ampere (MTPA) strategy, the quick start-up method is proposed, and the critical start-up curve parameters are numerically calculated. Although the initial and precise angles during the start-up process are not available, the proposed curve can be close to the average locus to a great extent. The simulation and an experiment are conducted using an actual servo motor under different initial angles. The results show that when the initial rotor position is close to the minimum angle of the Hall sector, the proposed method exhibits a pronounced acceleration effect. Due to the short stroke, although the position tracking of the proposed method is slightly behind the traditional method, the time difference is negligible when the initial position approaches the maximum angle. Combined with the average start-up time of the entire initial angle in the Hall sector, the proposed method can effectively reduce the average start-up time. A quick start-up method for SPMSM based on a Hall position sensor is proposed. In the conventional control method, the maximum starting torque and the minimum statistical value of the start-up time cannot be achieved over the entire range of initial angles. Therefore, the novel position curve is designed to improve the start-up time for small initial angles in each Hall sector while considering the start-up process at other angles. Statistical analysis has demonstrated a significant reduction in the start-up time expectation of the entire initial rotor positions. The method optimizes the torque reduction problem during the start-up process, which is caused by imprecise positioning in the first Hall sector. Moreover, the ease of transplantation allows the method to be applied to various motor drive algorithms.
高慧达, 史婷娜, 曹彦飞, 王剑, 阎彦. 基于霍尔位置传感器的表贴式永磁同步电机最速起动方法[J]. 电工技术学报, 2025, 40(10): 3120-3130.
Gao Huida, Shi Tingna, Cao Yanfei, Wang Jian, Yan Yan. A Quick Start-Up Method for Surface-Mounted Permanent Magnet Synchronous Motor Based on Hall Position Sensor. Transactions of China Electrotechnical Society, 2025, 40(10): 3120-3130.
[1] 王田苗, 陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报, 2014, 50(9): 1-13. Wang Tianmiao, Tao Yong.Research status and industrialization development strategy of Chinese industrial robot[J]. Journal of Mechanical Engin- eering, 2014, 50(9): 1-13. [2] 孟明辉, 周传德, 陈礼彬, 等. 工业机器人的研发及应用综述[J]. 上海交通大学学报, 2016, 50(增刊1): 98-101. Meng Minghui, Zhou Chuande, Chen Libin, et al.A review of the research and development of industrial robots[J]. Journal of Shanghai Jiao Tong University, 2016, 50(S1): 98-101. [3] Pillay P, Krishnan R.Application characteristics of permanent magnet synchronous and brushless DC motors for servo drives[J]. IEEE Transactions on Industry Applications, 1991, 27(5): 986-996. [4] 王海兵, 赵荣祥, 汤胜清, 等. 永磁同步电机位置检测偏差对驱动系统性能的影响研究[J]. 电工技术学报, 2018, 33(4): 910-918. Wang Haibing, Zhao Rongxiang, Tang Shengqing, et al.Research on the influence of the position detection error to the PMSM drive system[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 910-918. [5] 周楠, 张波. 六自由度协作型机器人的结构设计与运动规划[J]. 机械制造, 2018, 56(9): 40-44, 49. Zhou Nan, Zhang Bo.Structural design and motion planning of 6-DOF collaborative robot[J]. Machinery, 2018, 56(9): 40-44, 49. [6] 莫会成, 闵琳. 现代高性能永磁交流伺服系统综述: 传感装置与技术篇[J]. 电工技术学报, 2015, 30(6): 10-21. Mo Huicheng, Min Lin.Summary of modern high performance permanent magnet AC servo system: sensor device and technology[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 10-21. [7] 李垣江, 苗奎星, 魏海峰, 等. 基于带通频率跟踪滤波器的永磁同步电机转子位置与速度估算[J]. 电工技术学报, 2022, 37(21): 5402-5413. Li Yuanjiang, Miao Kuixing, Wei Haifeng, el. Permanent magnet synchronous motor rotor position and speed estimation methodology based on band- pass frequency tracking filter[J]. Transaction of China Electrotechnical Society, 2022, 37(21): 5402-5413. [8] Kim S Y, Choi C, Lee K, et al.An improved rotor position estimation with vector-tracking observer in PMSM drives with low-resolution Hall-effect sensors[J]. IEEE Transactions on Industrial Elec- tronics, 2011, 58(9): 4078-4086. [9] 倪启南, 杨明, 徐殿国, 等. 低分辨率位置传感器永磁同步电机精确位置估计方法综述[J]. 电工技术学报, 2017, 32(22): 70-81. Ni Qinan, Yang Ming, Xu Dianguo, et al.Review of precise position estimation method of PMSM with low-resolution position sensor[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 70-81. [10] 钟逸飞, 孔武斌, 易磊, 等. 基于霍尔位置传感器的永磁同步电机方波启动问题研究[J]. 船电技术, 2018, 38(1): 26-29, 32. Zhong Yifei, Kong Wubin, Yi Lei, et al.Square wave start-up control of permanent magnet synchronous motor with Hall-effect sensors[J]. Marine Electric & Electronic Engineering, 2018, 38(1): 26-29, 32. [11] 易磊, 曲荣海, 李新华, 等. 霍尔位置检测的电动汽车永磁电机矢量控制[J]. 微特电机, 2018, 46(9): 63-67. Yi Lei, Qu Ronghai, Li Xinhua, et al.Vector control of permanent magnet motor using hall sensors for electric vehicles[J]. Small & Special Electrical Machines, 2018, 46(9): 63-67. [12] 朱良红, 张国强, 李宇欣, 等. 基于级联扩张观测器的永磁电机无传感器自抗扰控制策略[J]. 电工技术学报, 2022, 37(18): 4614-4624. Zhu Lianghong, Zhang Guoqiang, Li Yuxin, et al.Active disturbance rejection control for position sensorless permanent magnet synchronous motor drives based on cascade extended state observer[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4614-4624. [13] 王菁, 颜建虎, 季国东, 等. 一种基于双位置观测器的永磁同步电机低速无位置传感器控制方法[J]. 电工技术学报, 2023, 38(2): 375-386. Wang Jing, Yan Jianhu, Ji Guodong, et al.A sensorless control method for permanent magnet synchronous machine based on dual position observers at low speed[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 375-386. [14] De Donato G, Scelba G, Pulvirenti M, et al.Low-cost, high-resolution, fault-robust position and speed estimation for PMSM drives operating in safety- critical systems[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 550-564. [15] 于安博, 刘利, 阚志忠, 等. 高频脉振信号注入永磁同步电机无滤波器初始位置辨识方法[J]. 电工技术学报, 2021, 36(4): 801-809. Yu Anbo, Liu Li, Kan Zhizhong, et al.Initial position identification of PMSM with filterless high frequency pulse signal injection method[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 801-809. [16] 曹春堂, 兰志勇, 沈凡享. 永磁同步电机无位置传感器控制系统中初始位置角检测综述[J]. 电气技术, 2020, 21(6): 1-6. Cao Chuntang, Lan Zhiyong, Shen Fanxiang.Review of initial position angle detection in sensorless control system of permanent magnet synchronous motor[J]. Electrical Engineering, 2020, 21(6): 1-6. [17] 付康壮, 刘计龙, 麦志勤, 等. 改进型IF控制结合有效磁链法的永磁同步电机全速域无位置传感器控制策略[J]. 电工技术学报, 2022, 37(22): 5704-5716. Fu Kangzhuang, Liu Jilong, Mai Zhiqin, et al.A full-speed domain sensorless control strategy for permanent magnet synchronous motor based on improved IF control and effective flux method[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5704-5716. [18] Jeong Y S, Lorenz R D, Jahns T M, et al.Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods[J]. IEEE Transactions on Industry Appli- cations, 2005, 41(1): 38-45. [19] 孙明阳, 和阳, 邱先群, 等. 随机频率三角波注入永磁同步电机无位置传感器降噪控制[J]. 电工技术学报, 2023, 38(6): 1460-1471. Sun Mingyang, He Yang, Qiu Xianqun, et al.Random-frequency triangular wave injection based sensorless control of PMSM drives for audible noise reduction[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1460-1471. [20] 赵远洋, 韩邦成, 陈宝栋. 基于霍尔矢量相位跟踪的永磁同步电机转子位置与速度估算方法[J]. 电工技术学报, 2019, 34(15): 3147-3157. Zhao Yuanyang, Han Bangcheng, Chen Baodong.Speed and rotor position estimation for PMSM based on hall vector phase-tracking[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3147-3157. [21] 张冰鑫, 刘侃, 李跃, 等. 基于累积误差补偿的永磁同步电机低速插值控制策略[J]. 电气工程学报, 2023, 18(3): 145-153. Zhang Bingxin, Liu Kan, Li Yue, et al.Low speed interpolation control strategy of permanent magnet synchronous motor based on accumulative error compensation[J]. Journal of Electrical Engineering, 2023, 18(3): 145-153. [22] 张懿, 张明明, 魏海峰, 等. 基于霍尔传感器的永磁同步电机高精度转子位置观测[J]. 电工技术学报, 2019, 34(22): 4642-4650. Zhang Yi, Zhang Mingming, Wei Haifeng, et al.High precision rotor position observation of permanent magnet synchronous motor based on hall sensors[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4642-4650. [23] 张春雷, 张辉, 叶佩青. 高霍尔位置检测精度的圆筒型永磁同步直线电机设计[J]. 电工技术学报, 2022, 37(10): 2481-2490. Zhang Chunlei, Zhang Hui, Ye Peiqing.Design of tubular permanent magnet synchronouslinear motor by reliability-based robust design optimization[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2481-2490.