Improved Loss Separation Model of Oriented Silicon Steel Sheets Considering the Influence of Stress
Li Huiqi1, Liao Yuru1, Ma Guang2, Yang Guang1, Zhang Feng1
1. Hebei Key Laboratory of Green and Efficient New Electrical Materials and Equipment North China Electric Power University Baoding 071003 China; 2. State Key Laboratory of Advanced Power Transmission Technology China Electric Power Research Institute Co. Ltd Beijing 100192 China
Abstract:The magnetic properties and loss characteristics of oriented silicon steel sheets exhibit significant deviation under stress. The traditional loss separation model generally overlooks the impact of mechanical stress on the loss characteristics, resulting in calculation errors. In recent years, most studies on the loss characteristics of oriented silicon steel sheets under mechanical stress have focused on qualitative analysis, with only a few studies making quantitative improvements to the loss separation model. This paper develops an improved loss separation model based on the traditional loss separation model by introducing stress terms into the hysteresis loss and excess loss. Firstly, measurements from a single sheet tester with unidirectional stressing are utilized to analyze the stress dependency of the loss characteristics of the oriented silicon steel sheets. The experimental results demonstrate a significant enhancement in loss under compressive stress while exhibiting a slight decreasing trend under tensile stress. The magnetization mechanism in ferromagnetism explains the variation of the loss characteristics under mechanical stress. Secondly, the hysteresis loss and excess loss under stress are calculated based on the Bertotti traditional loss separation model. Since the stress component is not introduced into the hysteresis loss in the traditional loss separation model, the effect of stress on the hysteresis loss is only reflected by the hysteresis loss coefficient, leading to a significant error in the calculation of the hysteresis loss under stress. Although the excess loss parameter , currently expressed by a constant coefficient, embodies the effect of stress, it fails to capture the effect of the applied mechanical stress on the losses of each magnetic induction intensity. Consequently, computational inaccuracies arise when employing the Bertotti traditional loss separation model. Based on the correlation between parameters in excess loss, hysteresis loss, and stress, the traditional separation formula for losses is improved by introducing stress components into the excess loss parameters and hysteresis loss. An improved loss separation model is established and verified by varying the frequency of excitation and the type of oriented silicon steel sheet. The results indicate that the improved loss separation model can accurately separate and calculate the losses of oriented silicon steel sheets under different stresses while maintaining a remarkable precision level. Experimental measurement and calculation analysis are performed, and the conclusions are as follows. (1) The excess loss parameter is correlated with stress, and incorporating the stress component into the excess loss parameter can effectively mitigate the calculation error caused by stress in the traditional loss separation model. (2) An improved loss separation model is proposed based on the traditional mode by incorporating the excess loss and hysteresis loss into stress-related functions. (3) The improved loss separation model is confirmed through testing with different frequency excitations and oriented silicon steel sheets, demonstrating its ability to accurately separate losses under different stresses.
李慧奇, 廖峪茹, 马光, 杨光, 张枫. 考虑应力作用下取向硅钢片的改进损耗分离模型[J]. 电工技术学报, 2025, 40(10): 3097-3106.
Li Huiqi, Liao Yuru, Ma Guang, Yang Guang, Zhang Feng. Improved Loss Separation Model of Oriented Silicon Steel Sheets Considering the Influence of Stress. Transactions of China Electrotechnical Society, 2025, 40(10): 3097-3106.
[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819. Zhang Zhigang, Kang Chongqing.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. [2] 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14. Shu Yinbiao, Zhang Liying, Zhang Yunzhou, et al.Carbon peak and carbon neutrality path for China’s power industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14. [3] 郭莹霏, 池源, 王强钢, 等. 面向多元负荷和优质供电的虚拟增容配电变压器: 概念、应用与展望[J].电工技术学报, 2024, 39(21): 6666-6686, 6803. Guo Yingfei, Chi Yuan, Wang Qianggang, et al.Virtual capacity-enhanced distribution transformer for diverse loads and quality power supply: concepts, applications, and prospects[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6666-6686, 6803. [4] 陈彬, 王川源, 刘洋, 等. 基于磁导-电容类比法和解析Preisach模型的铁心动态磁滞建模方法[J]. 电工技术学报, 2024, 39(18): 5576-5587. Chen Bin, Wang Chuanyuan, Liu Yang, et al.Dynamic hysteresis modeling method for iron core based on permeance-capacitance analogy and analytic Preisach model[J]. Transactions of China Electro- technical Society, 2024, 39(18): 5576-5587. [5] 潘超, 安景革, 刘闯, 等. 变压器偏磁效应噪声特性的多场耦合分析与抑制[J]. 电工技术学报, 2023, 38(18): 5077-5088. Pan Chao, An Jingge, Liu Chuang, et al.Multi-field coupling analysis and suppression for biased magnetic noise in transformer[J]. Transactions of China Elec- trotechnical Society, 2023, 38(18): 5077-5088. [6] 迟青光, 张艳丽, 陈吉超, 等. 非晶合金铁心损耗与磁致伸缩特性测量与模拟[J]. 电工技术学报, 2021, 36(18): 3876-3883. Chi Qingguang, Zhang Yanli, Chen Jichao, et al.Measurement and modeling of lossand magneto- strictive properties for the amorphous alloy core[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3876-3883. [7] 孙鹤, 李永建, 刘欢, 等. 非正弦激励下纳米晶铁心损耗的计算方法与实验验证[J]. 电工技术学报, 2022, 37(4): 827-836. Sun He, Li Yongjian, Liu Huan, et al.The calculation method of nanocrystalline core loss under non- sinusoidal excitation and experimental verification[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 827-836. [8] 赵志刚, 贾慧杰, 刘朝阳, 等. 考虑PWM波形特征的纳米晶磁心损耗模型的研究及验证[J]. 电工技术学报, 2024, 39(6): 1602-1612. Zhao Zhigang, Jia Huijie, Liu Zhaoyang, et al.Research and verification of nanocrystalline core loss model considering PWM waveform characteristics[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1602-1612. [9] 康丽, 张艳丽, 唐伟, 等. 基于变系数Steinmetz公式的直流偏磁下铁心损耗计算[J]. 电工技术学报, 2019, 34(增刊1): 1-6. Kang Li, Zhang Yanli, Tang Wei, et al.Calculation of core loss under dc bias based on the variable coefficient Steinmetz formula[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 1-6. [10] 彭清贵, 陈学平, 来至. 压应力对小型铁氧体磁心性能的影响及测试夹具设计[J]. 磁性材料及器件, 2024, 55(2): 61-66. Peng Qinggui, Chen Xueping, Lai Zhi.Influence of compressive stress on the performance of small ferrite core and design of test fixture[J]. Journal of Magnetic Materials and Devices, 2024, 55(2): 61-66. [11] 李梦星, 张艳丽, 姜伟, 等. 机械应力下电工钢片磁滞与磁致伸缩回环滞后特性模拟[J]. 电工技术学报, 2022, 37(11): 2698-2706. Li Mengxing, Zhang Yanli, Jiang Wei, et al.Simulation of hysteresis and magnetostrictive loop hysteretic characteristics of electrical steel sheets under mechanical stress[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2698-2706. [12] 王振, 张艳丽, 龚园, 等. 机械应力下无取向电工钢片磁致伸缩特性研究[J]. 电工技术学报, 2023, 38(21): 5682-5690. Wang Zhen, Zhang Yanli, Gong Yuan, et al.Study on magnetostrictive properties of non-oriented electrical steel sheet under mechanical stress[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5682-5690. [13] 李永建, 李宗明, 利雅婷, 等. 考虑磁-力耦合效应的混合磁滞模型研究[J]. 电工技术学报, 2024, 39(22): 6941-6951. Li Yongjian, Li Zongming, Li Yating, et al.Study of hybrid hysteresis model considering magnetic-force coupling effect[J]. Transactions of China Electro- technical Society, 2024, 39(22): 6941-6951. [14] Wang Hanghang, Chen Junquan, Jiang Yapeng.Effect of cutting stress on magnetic properties of non- oriented electrical steel[C]//2023 IEEE International Conference on Applied Superconductivity and Elec- tromagnetic Devices (ASEMD), Tianjin, China, 2023: 1-2. [15] Li Yongjian, Fu Yu, Dou Yu, et al.Magnetic properties measurement and analysis of electrical steel sheet under cutting influence[J]. 2021, 11(2): 025115. [16] 赵小军, 张凌云, 刘洋, 等. 机械应力对取向硅钢片综合磁性能影响的实验研究[J]. 电工技术学报, 2022, 37(22): 5776-5787. Zhao Xiaojun, Zhang Lingyun, Liu Yang, et al.Experimental study on the effect of mechanical stress on the comprehensive magnetic properties of the grain-oriented silicon steel[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5776-5787. [17] 刘士利, 罗英楠, 刘宗烨, 等. 基于电磁-热耦合原理的三芯铠装电缆在低频输电方式下的损耗特性研究[J]. 电工技术学报, 2021, 36(22): 4829-4836. Liu Shili, Luo Yingnan, Liu Zongye, et al.Study on loss characteristics of three core armored cable under low-frequency transmission mode based on electro- magnetic, thermal coupling principle[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4829-4836. [18] 李海锋, 许永治, 刘沈全, 等. 柔性低频输电系统的故障分量特征及保护适用性分析[J]. 高电压技术, 2024, 50(5): 1987-1996. Li Haifeng, Xu Yongzhi, Liu Shenquan, et al.Analysis of fault component characteristics and protection applicability on flexible low frequency transmission system[J]. High Voltage Engineering, 2024, 50(5): 1987-1996. [19] 刘刚, 孙立鹏, 王雪刚, 等. 正弦及谐波激励下的铁心损耗计算方法改进及仿真应用[J]. 电工技术学报, 2018, 33(21): 4909-4918. Liu Gang, Sun Lipeng, Wang Xuegang, et al.Improvement of core loss calculation method and simulation application under sinusoidal and harmonic excitations[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 4909-4918. [20] 何忠治. 电工钢[M]. 北京: 冶金工业出版社, 1997. [21] Bertotti G.General properties of power losses in soft ferromagnetic materials[J]. IEEE Transactions on Magnetics, 1988, 24(1): 621-630. [22] Permiakov V, Dupré L, Pulnikov A, et al.Loss separation and parameters for hysteresis modelling under compressive and tensile stresses[J]. Journal of Magnetism and Magnetic Materials, 2004, 272: E553-E554. [23] 赵志刚, 徐曼, 胡鑫剑. 基于改进损耗分离模型的铁磁材料损耗特性研究[J]. 电工技术学报, 2021, 36(13): 2782-2790. Zhao Zhigang, Xu Man, Hu Xinjian.Research on magnetic losses characteristics of ferromagnetic materials based on improvement loss separation model[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2782-2790. [24] Olivares-Galván J C, Escarela-Pérez R, Georgilakis P S, et al. Separation of no-load losses for distribution transformers using experimental methods: two frequ- encies and two temperatures[C]//7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2010), Agia Napa, 2010: 1-5. [25] 金秋. 间谐波激励下的电工钢损耗分析与磁化特性研究[D]. 北京: 华北电力大学, 2022. Jin Qiu.Loss analysis and magnetization characteri- stics of electrical steel under interharmonic exci- tation[D]. Beijing: North China Electric Power University, 2022. [26] Bertotti G.Hysteresis in Magnetism[M]. San Diego: Academic Press, 1998. [27] Martin R V, Perigo E A.A static measurement system for soft magnetic materials[J]. IEEE Transactions on Magnetics, 2014, 50(4): 1-4. [28] Garcia J A, Rivas M.A quasi-static magnetic hysteresis loop measurement system with drift correction[J]. IEEE Transactions on Magnetics, 2006, 42(1): 15-17. [29] 程灵, 马光, 韩钰, 等. 薄规格取向硅钢电磁特性及在中低频率电力装备中的应用[J]. 电工钢, 2022, 4(4): 1-8. Cheng Ling, Ma Guang, Han Yu, et al.Electro- magnetic characteristics of thin-gauge grain-oriented silicon steel and its application in medium and low frequency power equipments[J]. Electrical Steel, 2022, 4(4): 1-8. [30] 段子越, 孟永庆, 宁联辉, 等. 柔性分频输电系统的构建规划及关键设备技术综述[J]. 电力系统自动化, 2023, 47(10): 205-215. Duan Ziyue, Meng Yongqing, Ning Lianhui, et al.Review on construction planning and key equipment technology of flexible fractional frequency trans- mission system[J]. Automation of Electric Power Systems, 2023, 47(10): 205-215. [31] 赵国亮, 陈维江, 邓占锋, 等. 柔性低频交流输电关键技术及应用[J]. 电力系统自动化, 2022, 46(15): 1-10. Zhao Guoliang, Chen Weijiang, Deng Zhanfeng, et al.Key technologies and application of flexible low- frequency AC transmission[J]. Automation of Electric Power Systems, 2022, 46(15): 1-10.