Integrated Control Method for Suppressing Whole-Process Overvoltage in HPFC Systems Combining Reactive Power Adaptive Regulation with Improved LADRC Strategy
1. State Key Laboratory of New Energy Power System North China Electric Power University Baoding 071003 China;
2. Economic and Technological Research Institute of State Grid Hebei Electric Power Co Ltd. Shijiazhuang 050000 China
Hybrid Power Flow Controller (HPFC) is an advanced power system device that has garnered significant attention for its potential applications in modern power systems, primarily due to its capability to achieve continuous and precise power flow regulation. However, under the fault scenarios, the HPFC may experience overvoltage issues, which pose a threat to the safe operation of the HPFC device and may compromise the stability of the entire power system. To address this critical challenge, this paper proposes a novel control strategy that integrates linear active disturbance rejection control (LADRC) with adaptive reactive power regulation and adaptive bandwidth parameter regulation, aiming to effectively suppress overvoltage throughout the entire process.
The study begins with an in-depth analysis of the topology and working principle of the HPFC, focusing on the internal power characteristics of the system and the mechanism of overvoltage generation. By examining the power flow relationships within the HPFC system and the coupling between reactive power and voltage, an Adaptive Reactive Power Control (ARPC) strategy is developed. This strategy dynamically regulates reactive power during system faults to effectively mitigate overvoltage. Additionally, to address the potential short-term overvoltage issue at the initial stage of overvoltage suppression, Linear Active Disturbance Rejection Control (LADRC) is introduced to enhance the dynamic response characteristics of the system. Traditional fixed-bandwidth LADRC, however, has limitations in suppressing overvoltage caused by faults. Therefore, this paper further investigates the relationship between the bandwidth parameter of LADRC and its dynamic response characteristics. An improved Linear Active Disturbance Rejection Control method, termed Adaptive LADRC (A-LADRC), is proposed. This method optimizes the bandwidth parameter in real-time based on the difference between the reactive power reference value and the actual output. By dynamically adjusting the controller bandwidth, the proposed method can rapidly suppress overvoltage while maintaining system stability, thereby achieving comprehensive overvoltage suppression.The integration of ARPC and A-LADRC enables coordinated control across all operational stages, from the onset of a fault to its recovery.
Finally, based on RT-LAB real-time simulator and actual controller, a controller level hardware-in-the-loop test platform was built to verify the overvoltage suppression strategy under different fault scenarios. The experiment compares and validates the ARPC combined PI control and the proposed A-LADRC strategy. The experimental results show that the inhibition time of ARPC combined with A-LADRC under different working conditions is shorter, which is 0.11s and 0.12s, and 0.28s and 0.3s under PI control, which is about 50% shorter than that under PI control. In the simulation experiment of fault overvoltage, the short-time overvoltage exists in the initial stage of fault under PI control, which can be effectively avoided by using the proposed A-LADRC. The peak value of overvoltage suppression under PI control is 1.17 and 1.31, and the peak value of overvoltage suppression using the proposed method is 1.09 and 1.02, which shows that the suppression effect is obviously better. The results show that the proposed method can effectively improve the speed of overvoltage suppression, reduce the peak value of overvoltage suppression, and realize the whole process of overvoltage suppression from the control level.
[1] 杨用春, 杜翔宇, 杨鹏, 等. 混合潮流控制器阻抗特性分析及控制策略研究[J]. 电工技术学报, 2024, 39(21): 6720-6733.
Yang Yongchun, Du Xiangyu, Yang Peng, et al.Impedance characteristic analysis and control strategy research of hybrid power flow controller[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6720-6733.
[2] 韩旭东. 混合潮流控制器的参数设计与控制策略研究[D]. 北京: 华北电力大学, 2023.
Han Xudong.Research on parameter design and control strategy of hybrid power flow controller[D]. Beijing: North China Electric Power University, 2023.
[3] 陈柏超, 费雯丽, 田翠华, 等. 新型混合式统一潮流控制器及其调节特性分析[J]. 高电压技术, 2017, 43(10): 3256-3264.
Chen Baichao, Fei Wenli, Tian Cuihua, et al.Novel hybrid unified power flow controller and regulation performance analysis[J]. High Voltage Engineering, 2017, 43(10): 3256-3264.
[4] 杨用春, 杜翔宇, 李旭东, 等. 基于级联H桥的混合潮流控制器及控制策略研究[J/OL]. 华北电力大学学报(自然科学版), 1-9[2025-04-07]. http://kns.cnki.net/kcms/detail/13.1212.TM.20230726.1311.004.html.
Yang Yongchun, Du Xiangyu, Li Xudong, et al. Research on hybrid power flow controller and control strategy based on cascade H-bridge [J/OL]. Transactions of China Electrotechnical Society, 1-9[2025-04-07]. http://kns.cnki.net/kcms/detail/13.1212.TM.20230726.1311.004.html.
[5] 陈勇, 曹伟炜, 柏彬, 等. MMC-UPFC单相接地故障下运行特性分析及整体保护策略设计[J]. 电工技术学报, 2019, 34(3): 599-610.
Chen Yong, Cao Weiwei, Bai Bin, et al.Operation characteristics analysis under single-phase grounding fault and overall protection scheme design of MMC-UPFC device[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 599-610.
[6] 张晓宇, 顾乔根, 文继锋, 等. 统一潮流控制器系统串联变压器保护设计[J]. 电力系统自动化, 2017, 41(17): 72-77, 112.
Zhang Xiaoyu, Gu Qiaogen, Wen Jifeng, et al.Series transformer protection design in unified power flow controller system[J]. Automation of Electric Power Systems, 2017, 41(17): 72-77, 112.
[7] 崔福博, 郭剑波, 荆平, 等. MMC-UPFC接地设计及其站内故障特性分析[J]. 中国电机工程学报, 2015, 35(7): 1628-1636.
Cui Fubo, Guo Jianbo, Jing Ping, et al.The grounding design and internal fault characteristic of MMC-UPFC[J]. Proceedings of the CSEE, 2015, 35(7): 1628-1636.
[8] 孔志达, 宁联辉, 黄阳, 等.陆上风电分频输电系统暂态过电压分析及抑制[J/OL]. 电网技术, 1-15[2025-04-07]. https://doi.org/10.13335/j.1000-3673.pst.2024.1230.
Kong Zhida, Ning Lian-Hui, Huang Yang, et al.Analysis and suppression of transient overvoltage in frequency division transmission system of onshore wind power[J/OL]. Power Grid Technology, 1-15[2025-04-07]. https://doi.org/10.13335/j.1000-3673.pst.2024.1230.
[9] 范越, 陈颖, 霍超, 等. 新能源场站过电压受变压器磁饱和影响机理分析及修正方法[J]. 电力系统自动化, 2024, 48(5): 99-106.
Fan Yue, Chen Ying, Huo Chao, et al.Mechanism analysis and correction method for overvoltage of renewable energy station affected by transformer magnetic saturation[J]. Automation of Electric Power Systems, 2024, 48(5): 99-106.
[10] 颜湘武, 郭燕, 彭维锋, 等. 基于旋转移相变压器的电压源型无功补偿器及其控制策略[J]. 电工技术学报, 2023, 38(16): 4448-4464.
Yan Xiangwu, Guo Yan, Peng Weifeng, et al.Voltage source var compensator based on rotary phase shifting transformer and its control strategy[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4448-4464.
[11] 王烁哲, 韩民晓, 范溢文, 等. 基于改进自律分散控制的换流器型电网频率/电压调整与功率分配策略[J/OL]. 中国电机工程学报, 1-13[2025-04-07]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240422.0930.002.html.
Wang Shuozhe, Han Minxiao, Fan Yiwen, et al. Frequency/voltage regulation and power distribution strategy of converter based on improved autonomous decentralized control[J/OL]. Proceedings of the CSEE, 1-13[2025-04-07]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240422.0930.002.html.
[12] 田安民, 孙光淼, 卢文兵, 等. 大容量变流器中IGBT关断过电压抑制技术研究[J]. 电力电子技术, 2023, 57(10): 13-16, 38.
Tian Anmin, Sun Guangmiao, Lu Wenbing, et al.Research on IGBT turn-off overvoltage suppression technology in large-capacity converter[J]. Power Electronics, 2023, 57(10): 13-16, 38.
[13] 秦博宇, 张哲, 高鑫, 等. 响应驱动的直流送端暂态过电压评估及抑制策略[J/OL]. 电力系统自动化, 1-14[2025-04-07]. http://kns.cnki.net/kcms/detail/32.1180.TP.20241121.1714.004.html.
Qin Boyu, Zhang Zhe, Gao Xin, et al. Evaluation and suppression strategy of transient overvoltage at DC end of response drive[J/OL]. Automation of Electric Power Systems, 1-14[2025-04-07]. http://kns.cnki.net/kcms/detail/32.1180.TP.20241121.1714.004.html.
[14] 曹斌, 郑子萱, 刘鸿清, 等. 基于无功电流补偿的直驱风机故障后过电压抑制策略[J/OL]. 电力系统自动化, 1-11[2025-04-07]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240430.0946.002.html.
Cao Bin, Zheng Zixuan, Liu Hongqing, et al. Overvoltage suppression strategy of direct drive fan after fault based on reactive current compensation[J/OL]. Automation of Electric Power Systems, 1-11[2025-04-07]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240430.0946.002.html.
[15] 赵东君, 郭春义, 叶全, 等. 抑制风电场经LCC-HVDC并网系统交流过电压的无功功率分散协同控制方法[J]. 电力自动化设备, 2024, 44(1): 88-94.
Zhao Dongjun, Guo Chunyi, Ye Quan, et al.Reactive power decentralized cooperative control method for restraining AC overvoltage of wind farm via LCC-HVDC grid-connected system[J]. Electric Power Automation Equipment, 2024, 44(1): 88-94.
[16] 董芷函, 王国腾, 徐政, 等. 白鹤滩—江苏特高压混合级联直流系统运行特性分析方法[J]. 电力自动化设备, 2022, 42(6): 118-125.
Dong Zhihan, Wang Guoteng, Xu Zheng, et al.Operation characteristic analysis method of Baihetan-Jiangsu hybrid cascaded UHVDC system[J]. Electric Power Automation Equipment, 2022, 42(6): 118-125.
[17] 丁汀. 基于MMC的统一潮流控制器的电磁暂态特性研究[D]. 武汉: 华中科技大学, 2019.
Ding Ting.Study on electromagnetic transient characteristics of unified power flow controller based on MMC[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[18] 陈彤阳. 新型混合潮流控制装置拓扑及控制策略研究[D]. 北京: 华北电力大学, 2023.
Chen Tongyang.Research on topology and control strategy of new hybrid power flow control device[D]. Beijing: North China Electric Power University, 2023.
[19] 高本锋, 王晓, 梁纪峰, 等. 混合型统一潮流控制器抑制风电次同步振荡控制策略[J]. 电力建设, 2021, 42(9): 53-64.
Gao Benfeng, Wang Xiao, Liang Jifeng, et al.Control strategy of hybrid unified power flow controller to suppress wind power sub-synchronous oscillation[J]. Electric Power Construction, 2021, 42(9): 53-64.
[20] 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12): 1498-1510.
Gao Zhiqiang.On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12): 1498-1510.
[21] 李志华, 曾江, 黄骏翅, 等. 基于线性自抗扰控制的微网逆变器时-频电压控制策略[J]. 电力系统自动化, 2020, 44(10): 145-154.
Li Zhihua, Zeng Jiang, Huang Junchi, et al.Time-frequency voltage control strategy of microgrid inverter based on linear active disturbance rejection control[J]. Automation of Electric Power Systems, 2020, 44(10): 145-154.
[22] Tan Wen, Fu Caifen.Linear active disturbance-rejection control: analysis and tuning via IMC[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2350-2359.
[23] Zhou Xuesong, Zhong Weibao, Ma Youjie, et al.Control strategy research of D-STATCOM using active disturbance rejection control based on total disturbance error compensation[J]. IEEE Access, 2021, 9: 50138-50150.
[24] 王旭明, 罗成, 熊志, 等. 基于线性自抗扰的无刷双馈电机功率解耦控制策略研究[J]. 电气传动, 2024, 54(8): 27-35.
Wang Xuming, Luo Cheng, Xiong Zhi, et al.Linear active disturbance rejection power decoupling control method for BDFM[J]. Electric Drive, 2024, 54(8): 27-35.
[25] 孟建辉, 孙亚鑫, 张自力, 等. 带宽参数自适应调整的压缩空气储能线性自抗扰平滑并网控制策略[J/OL]. 电源学报, 1-17[2025-04-07]. http://kns.cnki.net/kcms/detail/12.1420.tm.20240725.0916.002.html.
Meng Jianhui, Sun Yaxin, Zhang Zili, et al. Linear active disturbance rejection smooth grid-connection control strategy for compressed air energy storage with adaptive adjustment of bandwidth parameters [J/OL]. Journal of Power Sources, 1-17[2025-04-07]. http://kns.cnki.net/kcms/detail/12.1420.tm.20240725.0916.002.html.