Transient- and Steady-State Optimization of Voltage and Current for Dual Active Bridge Converters Based on Model Predictive Control and Composite Duty Modulation
Yang Ming, Wang Xiaofeng, Sima Wenxia, Tang Junhao
State Key Laboratory of Power Transmission Equipment Technology Chongqing University Chongqing 400044 China
Abstract:Because of excellent performance in electrical isolation, bidirectional energy flow, and soft switching, dual active bridge (DAB) converters are widely used in new energy grid connections, electric vehicles, and train traction. In the new power system, the types of source loads are diverse, and the DC bus voltage varies greatly, resulting in a mismatch between the input and output voltages of the DAB converter, high current stress, hard switching, and low system efficiency. Meanwhile, the high proportion of new energy makes the operating conditions of the new power system very complex, and various source load devices are frequently changed. Therefore, the DAB converter should have good steady-state and transient performance. Existing modulation and control methods are challenging in achieving suppression of inductor current and output voltage ripple and improving system dynamic performance over the full power and wide voltage conversion ratio range. This paper proposes a control method for DAB converters based on model predictive control (MPC) and composite duty modulation (CDM). Firstly, a state-space average model considering various harmonics is established to optimize system steady-state performance. Then, a state-space average model of output voltage is established to reduce the number of sensors in the closed-loop control. Secondly, a CDM method is proposed to optimize the steady-state performance of DAB converters. Then, the forward Euler method calculates differential terms, and the output voltage is predicted to construct a transient- and steady-state control strategy based on MPC and CDM. Finally, experiments are conducted to verify the proposed control strategy. The conclusions can be drawn as follows. (1) The state-space average model of DAB converters considering various harmonics can calculate inductor current and output voltage ripple, and high-frequency current information sampling can be avoided by eliminating the inductor current in the state-space equation. (2) The proposed control method can solve the problems of fundamental duty modulation and multi-order reactive-current suppression strategies. Compared with the single-phase-shift modulation strategy, the proposed regulation method can suppress inductor current and output voltage ripple over the full operating range, reducing the inductor rms current by 61.9% and output voltage ripple by 70.5%. (3) The proposed control method significantly improves the dynamic performance, achieving fast switching of the DAB converter operating state without overshooting. When the transmission power is changed abruptly, the proposed control method transits to the target state within 3 ms smoothly.
杨鸣, 汪小丰, 司马文霞, 唐君豪. 基于模型预测与复合占空比的双有源全桥变换器电压电流暂稳态调控方法[J]. 电工技术学报, 2025, 40(4): 1203-1220.
Yang Ming, Wang Xiaofeng, Sima Wenxia, Tang Junhao. Transient- and Steady-State Optimization of Voltage and Current for Dual Active Bridge Converters Based on Model Predictive Control and Composite Duty Modulation. Transactions of China Electrotechnical Society, 2025, 40(4): 1203-1220.
[1] 李子欣, 高范强, 赵聪, 等. 电力电子变压器技术研究综述[J]. 中国电机工程学报, 2018, 38(5): 1274-1289. Li Zixin, Gao Fanqiang, Zhao Cong, et al.Research review of power electronic transformer technologies[J]. Proceedings of the CSEE, 2018, 38(5): 1274-1289. [2] 赵争鸣, 冯高辉, 袁立强, 等. 电能路由器的发展及其关键技术[J]. 中国电机工程学报, 2017, 37(13): 3823-3834. Zhao Zhengming, Feng Gaohui, Yuan Liqiang, et al.The development and key technologies of electric energy router[J]. Proceedings of the CSEE, 2017, 37(13): 3823-3834. [3] 孟祥齐, 贾燕冰, 任春光, 等. 直流微电网DAB变换器和直流固态变压器的非线性控制策略[J]. 电力系统自动化, 2023, 47(4): 180-189. Meng Xiangqi, Jia Yanbing, Ren Chunguang, et al.Nonlinear control strategy of dual active bridge converter and DC solid state transformer in DC microgrid[J]. Automation of Electric Power Systems, 2023, 47(4): 180-189. [4] 刘赞, 沙金, 邱高峰, 等. 多级离散扩展移相控制双有源桥DC-DC变换器的原理、参数设计与性能[J]. 电工技术学报, 2024, 39(12): 3761-3773. Liu Zan, Sha Jin, Qiu Gaofeng, et al.Principle, parameters design and performance of multistage discrete extended-phase-shift control dual active bridge dc-dc converters[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3761-3773. [5] 赵彪, 安峰, 宋强, 等. 双有源桥式直流变压器发展与应用[J]. 中国电机工程学报, 2021, 41(1): 288-298. Zhao Biao, An Feng, Song Qiang, et al.Development and application of DC transformer based on Dual-active-bridge[J]. Proceedings of the CSEE, 2021, 41(1): 288-298. [6] 杨向真, 王锦秀, 孔令浩, 等. 电压不匹配运行条件下双有源桥变换器的效率优化方法[J]. 电工技术学报, 2022, 37(24): 6239-6251. Yang Xiangzhen, Wang Jinxiu, Kong Linghao, et al.Efficiency optimization method of DAB converters under wide-voltage operating conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6239-6251. [7] 邓丹阳, 陈艳慧. 双有源桥直流变换器三电平扩展移相控制下电感电流有效值最优跟踪控制策略[J]. 电工技术学报, 2024, 39(18): 5800-5815. Deng Danyang, Chen Yanhui.Optimal tracking control strategy of inductive current rms for dual-active bridge DC converter with three-level extended phase-shift control[J]. Transactions of China Electrotechnical Society, 2024, 39(18): 5800-5815. [8] 陈润田, 李楚杉, 姚文熙, 等. 基于等效励磁电感的SiC串联器件型中压双有源桥变换器的软开关技术[J]. 电工技术学报, 2024, 39(12): 3732-3745. Chen Runtian, Li Chushan, Yao Wenxi, et al.Soft-switching technique for medium voltage dual active bridge converter with series-connected SiC devices based on equivalent[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3732-3745. [9] 刘子薇, 孙兆龙, 刘宝龙, 等. 基于直接功率控制的双有源桥暂态直流偏置抑制策略[J]. 电工技术学报, 2023, 38(12): 3234-3247. Liu Ziwei, Sun Zhaolong, Liu Baolong, et al.Transient DC bias suppression strategy of dual active bridge based on direct power control[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3234-3247. [10] Shao Shuai, Chen Linglin, Shan Zhenyu, et al.Modeling and advanced control of dual-active-bridge DC-DC converters: a review[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 1524-1547. [11] 汪涛, 骆仁松, 张茂强, 等. 考虑死区效应的双有源桥直流变压器损耗优化[J]. 电力系统自动化, 2023, 47(6): 197-205. Wang Tao, Luo Rensong, Zhang Maoqiang, et al.Loss optimization of DC transformer based on dual active bridge considering dead-zone effect[J]. Automation of Electric Power Systems, 2023, 47(6): 197-205. [12] Zhang Hao, Tong Xiangqian, Yin Jun, et al.Neural network-aided 4-DF global efficiency optimal control for the DAB converter based on the comprehensive loss model[J]. Energy, 2023, 262: 125448. [13] Hou Nie, Song Wensheng, Wu Mingyi.Minimum-current-stress scheme of dual active bridge DC-DC converter with unified phase-shift control[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8552-8561. [14] Tong Anping, Hang Lijun, Li Guojie, et al.Modeling and analysis of a dual-active-bridge-isolated bidirectional DC/DC converter to minimize RMS current with whole operating range[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 5302-5316. [15] Hebala O M, Aboushady A A, Ahmed K H, et al.Generic closed-loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4468-4478. [16] Choi W, Rho K M, Cho B H.Fundamental duty modulation of dual-active-bridge converter for wide-range operation[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4048-4064. [17] Liu Tao, Yang Xu, Chen Wenjie, et al.Design and implementation of high efficiency control scheme of dual active bridge based 10 kV/1 MW solid state transformer for PV application[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4223-4238. [18] Wang Xiaofeng, Yang Ming, Sima Wenxia, et al.Composite duty modulation of dual active bridge converters to minimize output voltage ripples and inductor RMS currents[J]. IEEE Transactions on Power Electronics, 2024, 39(5): 5662-5681. [19] Cao Lingling, Loo K H, Lai Y M.Output-impedance shaping of bidirectional DAB DC-DC converter using double-proportional-integral feedback for near-ripple-free DC bus voltage regulation in renewable energy systems[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2187-2199. [20] Sha Deshang, Wang Xiao, Liu Ke, et al.A current-fed dual-active-bridge DC-DC converter using extended duty cycle control and magnetic-integrated inductors with optimized voltage mismatching control[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 462-473. [21] Li Zhixiang, Pei Yunqing, Wang Laili, et al.A comprehensive closed-loop voltage ripple control scheme for modular multilevel converter-based power electronic transformers[J]. IEEE Transactions on Power Electronics, 2023, 38(12): 15225-15241. [22] Xue Lingxiao, Diaz D, Shen Zhiyu, et al.Dual active bridge based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple[C]//2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2013: 1920-1925. [23] Segaran D, Holmes D G, McGrath B P. Enhanced load step response for a bidirectional DC-DC converter[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 371-379. [24] Jeung Y C, Lee D C.Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6937-6946. [25] Bai Hua, Nie Ziling, Mi C C.Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional DC-DC converters[J]. IEEE Transactions on Power Electronics, 2010, 25(6): 1444-1449. [26] Chen Wenhua, Yang Jun, Guo Lei, et al.Disturbance-observer-based control and related methods-an overview[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083-1095. [27] 王武, 雷文浩, 蔡逢煌, 等. 结合电流应力优化的双有源全桥DC-DC变换器自抗扰控制[J]. 电工技术学报, 2022, 37(12): 3073-3086. Wang Wu, Lei Wenhao, Cai Fenghuang, et al.Active disturbance rejection control of dual-active-bridge DC-DC converter with current stress optimization[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3073-3086. [28] Shan Zhenyu, Jatskevich J, Iu H H C, et al. Simplified load-feedforward control design for dual-active-bridge converters with current-mode modulation[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(4): 2073-2085. [29] Song Wensheng, Hou Nie, Wu Mingyi.Virtual direct power control scheme of dual active bridge DC-DC converters for fast dynamic response[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1750-1759. [30] 蔡逢煌, 石安邦, 江加辉, 等. 结合电流应力优化与虚拟电压补偿的双有源桥DC-DC变换器三重移相优化控制[J]. 电工技术学报, 2022, 37(10): 2559-2571. Cai Fenghuang, Shi Anbang, Jiang Jiahui, et al.Triple-phase-shift optimal control of dual-active-brige DC-DC converter with current stress optimization and virtual voltage compensation[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2559-2571. [31] Chen Linglin, Shao Shuai, Xiao Qian, et al.Model predictive control for dual-active-bridge converters supplying pulsed power loads in naval DC micro-grids[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1957-1966. [32] 孙孝哲, 张祯滨, 韩明昊, 等. 双有源全桥变换器无电流传感器鲁棒预测控制[J]. 电工技术学报, 2024, 39(10): 3093-3104, 3140. Sun Xiaozhe, Zhang Zhenbin, Han Minghao, et al.An enhanced current sensorless predictive control for dual active bridge[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3093-3104, 3140. [33] 关维德, 李涛, 钟健, 等. 电机控制器直流侧前置双有源桥DC-DC变换器的模型预测与应力优化混合控制[J]. 电工技术学报, 2024, 39(12): 3787-3801. Guan Weide, Li Tao, Zhong Jian, et al.Hybrid control of model prediction and current stress optimization for dual active bridge DC-DC converter in motor drive systems[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3787-3801. [34] Zhao Biao, Song Qiang, Liu Wenhua, et al.Universal high-frequency-link characterization and practical fundamental-optimal strategy for dual-active-bridge DC-DC converter under PWM plus phase-shift control[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 6488-6494. [35] Qin Hengsi, Kimball J W.Generalized average modeling of dual active bridge DC-DC converter[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 2078-2084. [36] Li Jia, Luo Quanming, Mou Di, et al.Comprehensive optimization modulation scheme of low current level and wide ZVS range for dual active bridge converter with dead-zone control[J]. IEEE Transactions on Power Electronics, 2022, 37(3): 2731-2748. [37] Yang Eric Xian-Qing. Extended describing function method for small-signal modeling of resonant and multi-resonant converters[D]. Dissertation: Virginia Tech, Blacksburg, VA, 1994. [38] 詹昕明, 何震, 杭丽君, 等. CLLLC谐振电路模型改进方法研究[J]. 中国电机工程学报, 2023, 43(13): 5105-5116. Zhan Xinming, He Zhen, Hang Lijun, et al.Research on improvement method of CLLLC resonant circuit model[J]. Proceedings of the CSEE, 2023, 43(13): 5105-5116. [39] 安峰, 杨柯欣, 王嵩, 等. 基于模型前馈的双有源全桥DC-DC变换器电流应力优化方法[J]. 电工技术学报, 2019, 34(14): 2946-2956. An Feng, Yang Kexin, Wang Song, et al.Current stress optimized scheme with model-based feedforward for dual-active-bridge DC-DC converters[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2946-2956. [40] An Feng, Song Wensheng, Yang Kexin, et al.Improved dynamic performance of dual active bridge DC-DC converters using MPC scheme[J]. IET Power Electronics, 2018, 11(11): 1756-1765. [41] Tang Yuanhong, Hu Weihao, Cao Di, et al.Deep reinforcement learning aided variable-frequency triple-phase-shift control for dual-active-bridge converter[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10506-10515. [42] Mou Di, Luo Quanming, Li Jia, et al.Hybrid duty modulation for dual active bridge converter to minimize RMS current and extend soft-switching range using the frequency domain analysis[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4738-4751. [43] Li Xuming, Dong Zheng, Cao Yan, et al.Model-predictive control with parameter identification for multi-dual-active-bridge converters achieving accurate power balancing[J]. IEEE Transactions on Power Electronics, 2023, 38(9): 10880-10894.