Eigenvalue-Distribution-Based Stability Enhancement Strategy of Speed-Sensorless Induction Motor in Low-Speed Regenerating Region
Yang Kai1, Wang Yujie1, Luo Cheng1, Xiong Fei1, Zhan Zhejun2
1. School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. CRRC Yongji Electric Co. Ltd Yongji 044500 China
Abstract:In railway transportation, the induction motor (IM) relies on speed sensors to ensure the system’s accuracy. However, sensor installation and maintenance costs are immense, and the control accuracy is susceptible to environmental influences. In order to improve the reliability of the system and reduce the cost of maintenance, speed-sensorless control is widely used for IMs of rail trains. When the IM operates in a low-speed regenerating region, the speed estimation system becomes unstable, which limits its further application. There are two approaches to solving the above problem: anisotropy and model-based methods. Among them, the adaptive full-order flux observer is widely applied. Considering the eigenvalue distribution of the error coefficient matrix (ECM), the traditional stability improvement method cannot eliminate the unstable eigenvalues. Namely, it is impossible to completely solve the problem of unstable operation in low-speed regenerating regions. Therefore, this paper proposes an eigenvalue-distribution-based stability enhancement strategy (EDBSES) to eliminate the unstable eigenvalues. Firstly, the conventional method, which only takes the stator current as a feedback factor, is analyzed. Based on the determinant of ECM of the conventional method, the existence of unstable eigenvalues in the vicinity of zero synchronous speed is revealed. A multiple error system is established to eliminate the unstable eigenvalues by introducing stator current and rotor flux error to speed adaptive law and the observer. Based on the mathematical model of IM, the relation of actual rotor flux with stator current and slip speed is derived to obtain the rotor flux error. Then, the feedback gains containing the variable k are designed for stable operation. With the eigenvalue distribution method, the value range of k is determined to make all the real parts of the eigenvalues in EMC less than 0. Furthermore, the robustness of the speed-sensorless IM drive system is analyzed by the ratio of the actual to the estimated rotor flux. The analysis shows the amplitude difference between the estimated actual rotor flux is up to nearly 8 times when the k value is small and the slip speed is large with stator resistance mismatches. Therefore, the system is sensitive to stator resistance errors. An increase in the k value can improve the robustness of the system. The effectiveness of EDBSES is proved on a 2.2 kW IM experimental setup. Comparative experiments are conducted under step load torque and speed reversal conditions using zero feedback matrix, conventional feedback matrix, and EDBSES. The results show the EDBSES increases the load capacity in the low-speed regenerating region from 6.8 N·m to 11.9 N·m and effectively suppresses the phase current and speed ripples during speed reversal, which improves the stability of speed-sensorless IM in the low-speed regenerating region. In conclusion, this paper proposes an EDBSES method for enhancing stability in the low-speed regenerating region. Considering the eigenvalue distribution of ECM, a multiple error observer model with new feedback gains is established to eliminate the unstable eigenvalues of a speed-sensorless IM system. The stability and load capability of speed-sensorless IM is enhanced in low-speed regenerating regions.
[1] 王建, 杨龙月, 施阳. 矿井皮带机用感应电机无传感器控制研究[J]. 机电工程技术, 2024, 53(8): 32-35. Wang Jian, Yang Longyue, Shi Yang.Research on sensorless control of induction motor for mine belt machine[J]. Mechanical & Electrical Engineering Technology, 2024, 53(8): 32-35. [2] 杨北辉, 钟立群, 朱龙胜. 轨道交通异步牵引电机无速度传感器矢量控制技术分析[J]. 现代城市轨道交通, 2019(9): 29-35. Yang Beihui, Zhong Liqun, Zhu Longsheng.Analysis of speed sensorless vector control technology for asynchronous traction motor in rail transit[J]. Modern Urban Transit, 2019(9): 29-35. [3] 王震宇. 基于虚拟电压注入的感应电机无速度传感器矢量控制系统宽速域运行[D]. 武汉: 华中科技大学, 2022. Wang Zhenyu.Wide speed range operation of speed sensorless vector control system of induction motor based on virtual voltage injection[D]. Wuhan: Huazhong University of Science and Technology, 2022. [4] 赵文祥, 宋世昌, 周书文, 等. 改进滑模观测器的电流源逆变器驱动PMSM无位置传感器控制[J]. 电工技术学报, 2024, 39(4): 987-995. Zhao Wenxiang, Song Shichang, Zhou Shuwen, et al.Sensorless control of current source inverter driven PMSM with improved sliding mode observer[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 987-995. [5] 宋向金, 胡静涛, 祝洪宇, 等. 基于mSDTFT的无速度传感器异步电机转速估计[J]. 电机与控制应用, 2018, 45(1): 83-88, 93. Song Xiangjin, Hu Jingtao, Zhu Hongyu, et al.Sensorless speed estimation for an induction motor using mSDTFT[J]. Electric Machines & Control Application, 2018, 45(1): 83-88, 93. [6] 张杰, 柴建云, 孙旭东, 等. 双三相异步电机反相高频注入无速度传感器控制[J]. 中国电机工程学报, 2015, 35(23): 6162-6171. Zhang Jie, Chai Jianyun, Sun Xudong, et al.Sensor-less control of dual three phase induction machines by antiphase high frequency signal injection[J]. Pro-ceedings of the CSEE, 2015, 35(23): 6162-6171. [7] Staines C S, Caruana C, Asher G M, et al.Sensorless control of induction machines at zero and low frequency using zero sequence currents[J]. IEEE Transactions on Industrial Electronics, 2006, 53(1): 195-206. [8] 张家明, 张利军. 异步电机旋转高频电压注入无传感器矢量控制[J]. 电力电子技术, 2019, 53(3): 1-6. Zhang Jiaming, Zhang Lijun.Asynchronous motor rotating high frequency voltage injection sensorless vector control[J]. Power Electronics, 2019, 53(3): 1-6. [9] Wang Zhenyu, Sun Wei, Jiang Dong.Stability analysis and trajectory design of a nonlinear switching system for speed sensorless induction motor drive[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 5514-5524. [10] 杨凯, 李孺涵, 罗成, 等. 考虑参数误差的无速度传感器异步电机低速发电工况稳定性提升策略[J]. 电工技术学报, 2023, 38(21): 5738-5748, 5820. Yang Kai, Li Ruhan, Luo Cheng, et al.Enhanced stability for speed-sensorless induction motor drives in low-speed regenerating region considering para-meter uncertainties[J]. Transactions of China Elec-trotechnical Society, 2023, 38(21): 5738-5748, 5820. [11] 王大方, 李琪, 张鹏, 等. 带有相电压补偿基于EKF的无传感器感应电机转速估计[J]. 电机与控制学报, 2019, 23(1): 35-44. Wang Dafang, Li Qi, Zhang Peng, et al.Speed estimation method based on extended Kalman filter with phase voltage compensation for sensorless ACIM drives[J]. Electric Machines and Control, 2019, 23(1): 35-44. [12] 石秦赓, 朱俊杰, 韩一, 等. 基于自适应滑模观测器的永磁同步电机负载转矩辨识[J]. 电工技术学报, 2025, 40(12): 3868-3882. Shi Qingeng, Zhu Junjie, Han Yi, et al.Load torque identification of permanent magnet synchronous motor based on adaptive sliding mode observer[J]. Transactions of China Electrotechnical Society, 2025, 40(12): 3868-3882. [13] 许爱德, 刘鑫, 李新宇, 等. 基于参数辨识的永磁辅助同步磁阻电机电流无差拍控制[J]. 电工技术学报, 2024, 39(18): 5626-5638. Xu Aide, Liu Xin, Li Xinyu, et al.Current deadbeat control of permanent magnet-assisted synchronous reluctance motor based on parameter identification[J]. Transactions of China Electrotechnical Society, 2024, 39(18): 5626-5638. [14] 杨凯, 李孺涵, 罗成, 等. 负载变化下无传感器感应电机主动零频穿越及脉动抑制策略[J]. 电工技术学报, 2023, 38(18): 4910-4920. Yang Kai, Li Ruhan, Luo Cheng, et al.Proactive low-frequency ride-through method and its ripple reduction for sensorless induction motor drives under load variations[J]. Transactions of China Electro-technical Society, 2023, 38(18): 4910-4920. [15] 李德. 基于EKF的感应电机无速度传感器矢量控制低速性能提升[D]. 西安: 西安理工大学, 2021. Li De.Speed sensorless vector control of induction motor based on EKF to improve low speed perfor-mance[D]. Xi’an: Xi’an University of Technology, 2021. [16] Pal A, Das S, Chattopadhyay A K.An improved rotor flux space vector based MRAS for field-oriented control of induction motor drives[J]. IEEE Transa-ctions on Power Electronics, 2018, 33(6): 5131-5141. [17] 陆文斌. 基于电压电流模型磁链观测器的感应电机无速度传感器控制研究[D]. 杭州: 浙江大学, 2013. Lu Wenbin.Research on speed sensorless control of induction motor based on voltage-current model flux observer[D]. Hangzhou: Zhejiang University, 2013. [18] 胡锦涛, 邵宜祥, 庄圣伦, 等. 基于新型全阶观测器的感应电机无速度传感器控制[J]. 微电机, 2021, 54(5): 79-85. Hu Jintao, Shao Yixiang, Zhuang Shenglun, et al.Speed sensorless control of induction motor based on new full-order observer[J]. Micromotors, 2021, 54(5): 79-85. [19] Etien E, Chaigne C, Bensiali N.On the stability of full adaptive observer for induction motor in regenerating mode[J]. IEEE Transactions on Indu-strial Electronics, 2010, 57(5): 1599-1608. [20] 吕英俊, 刘卓伟, 苏涛, 等. 异步电机无传感器矢量控制极低速与零速性能研究[J]. 中国电机工程学报, 2019, 39(20): 6095-6103, 6190. Lü Yingjun, Liu Zhuowei, Su Tao, et al.Research of sensorless vector control performance for induction motor at very low-speed and zero-speed[J]. Pro-ceedings of the CSEE, 2019, 39(20): 6095-6103, 6190. [21] Luo Cheng, Wang Bo, Yu Yong, et al.A speed adaptive scheme-based full-order observer for sensor-less induction motor drives in low-speed regenerating operation range[C]//2018 21st International Con-ference on Electrical Machines and Systems (ICEMS), Jeju, Korea (South), 2018: 1301-1306. [22] 罗慧. 感应电机全阶磁链观测器和转速估算方法研究[D]. 武汉: 华中科技大学, 2009. Luo Hui.Research on full-order flux observer and speed estimation method of induction motor[D]. Wuhan: Huazhong University of Science and Tech-nology, 2009.