High-Voltage Discharge Particle Simulation and Discharge Spectral Characterization under the Influence of Metallic Foreign Object
Wu Peiyao1, Pei Shaotong1, Liu Yong2, Liu Yunpeng1, Han Xu1
1. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China; 2. State Grid Hengshui Electric Power Supply Company Hengshui 053000 China
Abstract:Metallic foreign objects in various types of power equipment may cause discharge problems. To achieve accurate multi-spectral monitoring of the discharge phenomenon caused by metallic foreign object, it is necessary to deeply understand its influence on the mechanism of optical radiation during discharge. Currently, research on the impact of metallic foreign objects on high-voltage discharge is mostly focused on the macro level, without delving into the micro-particle level to analyze its effect on the discharge mechanism, and the influence of metallic foreign object on optical radiation during discharge has not been thoroughly explored. To address these issues, this paper analyzes the characteristics of metallic foreign object's impact on the full-band optical radiation of discharge and its influence mechanism on the day-blind ultraviolet band through experiments and simulations. A high-voltage discharge experimental platform was first constructed. Discharge images were captured using ultraviolet and high-speed cameras, and the emission spectra were measured with a spectrometer to investigate the influence of metallic foreign object on full-band optical radiation during discharge. The effect of metallic foreign objects on the generation of day-blind ultraviolet radiation was further studied. It was verified that the particle transitions responsible for producing day-blind ultraviolet radiation are mainly ${{\text{N}}_{\text{2}}}({{\text{A}}^{\text{3}}}\Sigma _{\text{u}}^{+}\to {{\text{X}}^{\text{1}}}\Sigma _{\text{g}}^{+})$ and NO-γ(A2Σ+(v′)→X2Π(v″)). Based on this, a two-dimensional plasma simulation model was constructed to investigate the effect of different quantities of large metallic particles and varying masses of metal shavings on the discharge process. The model was used to calculate the number densities of NO(A2Σ+) and ${{\text{N}}_{\text{2}}}({{\text{A}}^{\text{3}}}\Sigma _{\text{u}}^{+})$ particles under different conditions, and the simulation results were validated by comparing them with the measured spectra. The experimental and simulation results were then comprehensively analyzed to explore the influence of metallic foreign object on day-blind ultraviolet radiation during discharge. High-speed camera reveals that metallic foreign object increases the chance of arc formation between the tip of the needle electrode and the metallic foreign object. From the spectrum of the 200-1000 nm band measured in the experiment, it is evident that the increase in metallic foreign object enhances the optical radiation across the entire spectrum generated by the discharge. However, this enhancement is selective to certain bands, with the ultraviolet and visible light bands responding more sensitively. Therefore, ultraviolet and visible light detection is more effective for monitoring discharges caused by metallic foreign objects. Analysis of UV images, 240~280 nm spectra, and simulations shows that an increase in the metal foreign object causes an increase in the amplitude of the spectral curve of the sun-blind UV band, an increase in the number densities of NO(A2Σ+) and ${{\text{N}}_{\text{2}}}({{\text{A}}^{\text{3}}}\Sigma _{\text{u}}^{+})$ particles, and an increase in the rate of the chemical reactions in the discharge region; however, the spectral shape remains basically unchanged, which means that it does not affect the types of chemical reactions and the relative ratios among them. By combining the electric field simulation results, the reason can be analyzed as follows: the metal foreign object increases the strength and inhomogeneity of the electric field, promoting the excitation and ionization of particles. This leads to the production of more NO(A2Σ+) and ${{\text{N}}_{\text{2}}}({{\text{A}}^{\text{3}}}\Sigma _{\text{u}}^{+})$ particles, thus promoting the enhancement of the sun-blind ultraviolet radiation. The results of this paper apply to discharge phenomena in air influenced by metallic foreign objects, and the influence of metal particles on discharge in SF6 and its alternative gases will be further investigated in the future.
吴佩遥, 裴少通, 刘勇, 刘云鹏, 韩旭. 金属异物影响的高压放电粒子仿真及放电光谱特性[J]. 电工技术学报, 2025, 40(13): 4148-4163.
Wu Peiyao, Pei Shaotong, Liu Yong, Liu Yunpeng, Han Xu. High-Voltage Discharge Particle Simulation and Discharge Spectral Characterization under the Influence of Metallic Foreign Object. Transactions of China Electrotechnical Society, 2025, 40(13): 4148-4163.
[1] 马飞越, 倪辉, 牛勃, 等. 252 kV GIS隔离开关异物缺陷检测及仿真分析[J]. 高压电器, 2020, 56(6): 42-48. Ma Feiyue, Ni Hui, Niu Bo, et al.Detection and simulation analysis of foreign body defects in 252 kV GIS disconnector[J]. High Voltage Apparatus, 2020, 56(6): 42-48. [2] 可翀, 刘星伟, 李威, 等. 500 kV GIS断路器灭弧室放电分析与处理[J]. 高压电器, 2023, 59(8): 173-179. Ke Chong, Liu Xingwei, Li Wei, et al.Analysis and treatment of discharge in interrupter of 500 kV GIS circuit breaker[J]. High Voltage Apparatus, 2023, 59(8): 173-179. [3] 刘佳鑫, 毕海涛, 郎业兴, 等. GIS自由颗粒放电缺陷的联合检测与分析[J]. 高压电器, 2020, 56(1): 175-180. Liu Jiaxin, Bi Haitao, Lang Yexing, et al.Joint detection and analysis for free particle discharge defect in GIS[J]. High Voltage Apparatus, 2020, 56(1): 175-180. [4] 林岑, 邱炜, 周波, 等. 一起110 kV GIS设备自由金属颗粒放电缺陷及解体分析案例[J]. 高压电器, 2024, 60(4): 214-220. Lin Cen, Qiu Wei, Zhou Bo, et al.Discharge defect of free metal particle of 110 kV GIS equipment and its disassembly analysis[J]. High Voltage Apparatus, 2024, 60(4): 214-220. [5] 高锵源. 110kV盆式绝缘子金属缺陷局部放电研究与优化[D]. 厦门: 厦门理工学院, 2016. Gao Qiangyuan.The research and optimization of metal defect partial discharge in 110kV basin-type insulator[D]. Xiamen: Xiamen University of Technology, 2016. [6] 张建勋, 卞宏志, 黄明祥, 等. 500kV GIS盆式绝缘子沿面微小颗粒放电研究[J]. 科技通报, 2022, 38(3): 31-36. Zhang Jianxun, Bian Hongzhi, Huang Mingxiang, et al.Study on surface micro particle discharge of the 500kV GIS basin-type insulator[J]. Bulletin of Science and Technology, 2022, 38(3): 31-36. [7] 沙伟燕, 罗艳, 马鹏欢, 等. 不同金属微粒缺陷下GIS盆式绝缘子表面放电与电场特性研究[J]. 绝缘材料, 2023, 56(9): 89-93. Sha Weiyan, Luo Yan, Ma Penghuan, et al.Study on surface discharge and electric field characteristics of GIS basin insulator with different metal particle defects[J]. Insulating Materials, 2023, 56(9): 89-93. [8] 苏楠. 特高压GIS盆式绝缘子内部缺陷及沿面放电特性研究[D]. 沈阳: 沈阳工业大学, 2021. Su Nan.Study on internal defects and surface discharge characteristicsof basin insulator in UHV GIS[D]. Shenyang: Shenyang University of Technology, 2021. [9] 李特, 王少华, 叶金标, 等. 含人工缺陷复合绝缘子红外特征试验研究[J]. 浙江电力, 2021, 40(4): 94-100. Li Te, Wang Shaohua, Ye Jinbiao, et al.Study on infrared spectra characteristics of composite insulator with artificial defects[J]. Zhejiang Electric Power, 2021, 40(4): 94-100. [10] 郑书生, 孔举, 戴敏婷, 等. X射线激励XLPE电缆终端金属颗粒局部放电的研究[J]. 电工技术学报, 2025, 40(3): 913-927. Zheng Shusheng, Kong Ju, Dai Minting, et al.Study on partial discharge of metal particles in XLPE cable terminal excited by X-ray[J]. Transactions of China Electrotechnical Society, 2025, 40(3): 913-927. [11] 姚雨杭, 陶霰韬, 于梦悦, 等. 含自由金属微粒流动变压器油的直流击穿特性[J]. 电工技术学报, 2023, 38(增刊1): 157-167. Yao Yuhang, Tao Xiantao, Yu Mengyue, et al.DC breakdown characteristics of flowing transformer oil contaminated by metallic particles[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 157-167. [12] 王媛, 杨睿成, 苏宝亮, 等. 直流GIS/GIL内微纳粉尘弥散浓度分布特性及对气隙击穿强度的影响[J]. 电工技术学报, 2025, 40(5): 1601-1613. Wang Yuan, Yang Ruicheng, Su Baoliang, et al.Characterization of diffuse concentration distribution of micron-nano dust in DC GIS/GIL and the effect on air gap breakdown strength[J]. Transactions of China Electrotechnical Society, 2025, 40(5): 1601-1613. [13] 李杰, 李晓昂, 吕玉芳, 等. 正弦振动激励下GIS内自由金属微粒运动特性[J]. 电工技术学报, 2021, 36(21): 4580-4589, 4597. Li Jie, Li Xiaoang, Lü Yufang, et al.Motion characteristics of free metal particles in GIS under sinusoidal vibration[J]. Transactions of China Electro-technical Society, 2021, 36(21): 4580-4589, 4597. [14] 李星, 刘卫东, 许渊, 等. 冲击振动下GIS内金属颗粒运动及其诱发沿面闪络特性[J]. 中国电机工程学报, 2023, 43(7): 2838-2848. Li Xing, Liu Weidong, Xu Yuan, et al.Movement behavior of metal particles and its induced insulator flashover characteristics under impact vibration in GIS[J]. Proceedings of the CSEE, 2023, 43(7): 2838-2848. [15] 许渊, 刘卫东, 陈维江, 等. 交流GIS绝缘子表面亚毫米级金属颗粒的运动和局部放电特性[J]. 中国电机工程学报, 2019, 39(14): 4315-4324, 4334. Xu Yuan, Liu Weidong, Chen Weijiang, et al.Motion characteristics and partial discharge characteristics of submillimeter metal particles on the surface of AC GIS spacer[J]. Proceedings of the CSEE, 2019, 39(14): 4315-4324, 4334. [16] 马宏忠, 王立宪, 戴锋. GIL中金属颗粒污染物运动行为与放电特性研究[J]. 电机与控制学报, 2022, 26(3): 49-58. Ma Hongzhong, Wang Lixian, Dai Feng.Motion behavior and discharge characteristics of metal particles in GIL[J]. Electric Machines and Control, 2022, 26(3): 49-58. [17] 张宁, 王鹏, 刘智捷, 等. 流-电耦合场中金属颗粒群的荷电计算及影响因素研究[J]. 电工技术学报, 2024, 39(17): 5534-5544. Zhang Ning, Wang Peng, Liu Zhijie, et al.Study on the charge calculation and influencing factors of metal particle groups in fluid-electric coupling field[J]. Transactions of China Electrotechnical Society, 2024, 39(17): 5534-5544. [18] 郑莹莹, 吕俊涛, 周大洲, 等. GIS设备金属颗粒放电的带电检测方法[J]. 山东电力技术, 2018, 45(11): 15-18. Zheng Yingying, Lü Juntao, Zhou Dazhou, et al.Live detection method for metal particle discharge in GIS equipment[J]. Shandong Electric Power, 2018, 45(11): 15-18. [19] 李泳霖, 黄世龙, 刘云鹏, 等. 考虑湿度气压影响的瓷绝缘子沿面类辉光放电仿真及其紫外光谱特性分析[J]. 电工技术学报, 2023, 38(7): 1956-1969. Li Yonglin, Huang Shilong, Liu Yunpeng, et al.Simulation and ultraviolet spectral characteristics of glow-like discharge along the surface of porcelain insulators considering the influences of the humidity and atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1956-1969. [20] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996. [21] Rahman A, Yalin A P, Surla V, et al.Absolute UV and VUV emission in the 110-400 nm region from 13.56 MHz driven hollow slot microplasmas operating in open air[J]. Plasma Sources Science and Technology, 2004, 13(3): 537-547. [22] Piper L G, Cowles L M, Rawlins W T.State-to-state excitation of NO(A2Σ+, v’=0, 1, 2) by N2(A3Σ+u, v’=0, 1, 2)[J]. The Journal of Chemical Physics, 1986, 85(6): 3369-3378. [23] Grum F, Costa L F.Spectral emission of corona discharges[J]. Applied Optics, 1976, 15(1): 76-79. [24] Setser D W, Stedman D H, Coxon J A.Chemical applications of metastable argon atoms. IV. excitation and relaxation of triplet states of N2[J]. The Journal of Chemical Physics, 1970, 53(3): 1004-1020. [25] 付洋洋, 罗海云, 邹晓兵, 等. 棒-板电极下缩比气隙辉光放电相似性的仿真研究[J]. 物理学报, 2014, 63(9): 288-295. Fu Yangyang, Luo Haiyun, Zou Xiaobing, et al.Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration[J]. Acta Physica Sinica, 2014, 63(9): 288-295. [26] Reuter S, von Woedtke T, Weltmann K D. The kINPen: a review on physics and chemistry of the atmospheric pressure plasma jet and its applications[J]. Journal of Physics D: Applied Physics, 2018, 51(23): 233001. [27] Kozlov K V, Brandenburg R, Wagner H E, et al.Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy[J]. Journal of Physics D: Applied Physics, 2005, 38(4): 518-529. [28] Wang Lanbo, Chen She, Wang Feng.Kinetic modelling of atmospheric pressure corona discharges in humid air[J]. Plasma Chemistry and Plasma Processing, 2019, 39(5): 1291-1315. [29] Gherardi N, Gouda G, Gat E, et al.Transition from glow silent discharge to micro-discharges in nitrogen gas[J]. Plasma Sources Science and Technology, 2000, 9(3): 340-346. [30] Kossyi I A, Yu Kostinsky A, Matveyev A A, et al.Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science and Technology, 1992, 1(3): 207-220. [31] He Wei, Liu Xinghua, Yang Fan, et al.Numerical simulation of direct current glow discharge in air with experimental validation[J]. Japanese Journal of Applied Physics, 2012, 51(2R): 026001. [32] Zhu Yifei, Starikovskaia S.Fast gas heating of nanosecond pulsed surface dielectric barrier discharge: spatial distribution and fractional contribution from kinetics[J]. Plasma Sources Science and Technology, 2018, 27(12): 124007. [33] Sakiyama Y, Graves D B, Chang H W, et al.Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species[J]. Journal of Physics D Applied Physics, 2012, 45(42): 425201. [34] 廖瑞金, 刘康淋, 伍飞飞, 等. 棒-板电极直流负电晕放电过程中重粒子特性的仿真研究[J]. 高电压技术, 2014, 40(4): 965-971. Liao Ruijin, Liu Kanglin, Wu Feifei, et al.Simulative study on characteristic of heavy particles in negative bar-plate DC corona discharge[J]. High Voltage Engineering, 2014, 40(4): 965-971. [35] Itikawa Database[DB/OL]. (2016-09-16)[2024-05-28]. www.lxcat.net/Itikawa. [36] IST-Lisbon Database[DB/OL]. (2018-06-29)[2024-05-28]. www.lxcat.net/IST-Lisbon. [37] Ren Ming, Dong Ming, Liu Jialin.Statistical analysis of partial discharges in SF6 gas via optical detection in various spectral ranges[J]. Energies, 2016, 9(3): 152. [38] 谢梁, 花广如, 崔云骧, 等. 湿度对棒-板间隙电晕特性的影响规律[J]. 南方电网技术, 2021, 15(7): 90-95. Xie Liang, Hua Guangru, Cui Yunxiang, et al.Influence of humidity on the corona characteristics of the bar-plate gap[J]. Southern Power System Tech-nology, 2021, 15(7): 90-95.