Abstract:The arc plasma torch can be used for pre experiments on ground erosion performance testing of spacecraft flight materials,which can save costs. The three-phase AC arc plasma torch has the advantages of simple power supply and reliable operation. The hollow electrode structure with dual inlet channels can not only improve the electrode life, but also achieve a wider range of power control. However, the design of plasma torches with this type of electrode structure is more complex and there is limited research and application in China. A three-phase AC plasma torch with magnetic motion, tangential inlet, and supersonic jet was developed and numerically modeled and experimentally studied. Firstly, a three-dimensional turbulent MHD multiphysics coupling simulation model of a hollow electrode three-phase AC arc plasma torch with a dual end inlet structure was established, and the flow state and electric thermal characteristics of the arc plasma inside the torch were obtained. Secondly, the influence laws of air intake, working current, air intake distribution ratio, and working frequency on the electric field, magnetic field, temperature field, flow field distribution, and arc characteristics inside the plasma torch were studied and revealed. Finally, the correctness of the numerical model was verified by comparing the arc voltage, nozzle outlet temperature, and arc root position under various operating conditions in simulation and experiment. The conclusion drawn from the study is as follows: (1) In a three-phase AC plasma torch, aerodynamic and electromagnetic forces dominate the flow characteristics of the arc root. During the process of increasing the intake volume from 30 g/s to 60 g/s, the cooling effect of the gas flowing along the wall is greater than the heat generated by the arc column, resulting in a downward trend in temperature; And the larger the intake volume, the more obvious the compression effect of the cold air layer on the arc, and the higher the arc pressure; The higher the working current, the higher the plasma temperature and jet velocity. (2) In a hollow electrode AC plasma torch with dual inlet ducts, changing the air intake distribution ratio can alter the position of the arc root along the electrode axis and the magnitude of the output power. Increasing the air intake distribution ratio can make the arc more significantly stretched in the axial direction, the arc longer, and the arc root closer to the arc back cover. (3) When the operating frequency is 1 kHz, the arc has a more stable motion trend, and the rotation speed of the arc root is five times that of the power frequency. The contact area with the electrode is reduced, which reduces the degree of electrode erosion and can improve the electrode life.
宋竟绮, 郝瑞祥, 袁帆, 周法, 陈海群. 基于空心电极的三相交流电弧等离子体炬建模与实验研究[J]. 电工技术学报, 2025, 40(13): 4125-4137.
Song Jingqi, Hao Ruixiang, Yuan Fan, Zhou Fa, Chen Haiqun. Modeling and Experimental Research on Three-Phase AC Arc Plasma Torch Based on Hollow Electrode. Transactions of China Electrotechnical Society, 2025, 40(13): 4125-4137.
[1] 郭文杰. 航天器大气环境模拟用高压大功率电弧加热器电源系统研究[D]. 北京: 北京交通大学, 2008. Guo Wenjie.Power supply system of high-voltage, high-power arc heater for reentry environment simulation[D]. Beijing: Beijing Jiaotong University, 2008. [2] 曹亚文, 韩先伟, 谭畅, 等. 双弧室磁控空气等离子体炬电弧特性的实验研究[J]. 高电压技术, 2021, 47(3): 832-839. Cao Yawen, Han Xianwei, Tan Chang, et al.Chara-cteristic researches on arc generated by magnetic double-chamber air plasma torch[J]. High Voltage Engineering, 2021, 47(3): 832-839. [3] (俄)M. F. 朱可夫. 电弧等离子体炬[M]. 陈明周, 邱励俭, 译. 北京: 科学出版社, 2016. [4] 周法, 马汉东, 陈海群, 等. 交流电弧等离子体炬及其应用的研究进展[J]. 空气动力学学报, 2022, 40(5): 15-29. Zhou Fa, Ma Handong, Chen Haiqun, et al.Research progress on AC arc plasma torch and its application[J]. Acta Aerodynamica Sinica, 2022, 40(5): 15-29. [5] Rutberg P G, Popov S D, Surov A V, et al.The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch[J]. Journal of Physics: Conference Series, 2012, 406: 012028. [6] 郭恒, 苏运波, 李和平, 等. 亚大气压六相交流电弧等离子体射流特性研究: 实验测量[J]. 物理学报, 2018, 67(4): 161-170. Guo Heng, Su Yunbo, Li Heping, et al.Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: experiments[J]. Acta Physica Sinica, 2018, 67(4): 161-170. [7] Matsuura T, Taniguchi K, Watanabe T.A new type of arc plasma reactor with 12-phase alternating current discharge for synthesis of carbon nanotubes[J]. Thin Solid Films, 2007, 515(9): 4240-4246. [8] Rehmet C, Fabry F, Rohani V, et al.Unsteady state analysis of free-burning arcs in a 3-phase AC plasma torch: comparison between parallel and coplanar electrode configurations[J]. Plasma Sources Science and Technology, 2014, 23(6): 065011. [9] Rehmet C, Fabry F, Rohani V, et al.High speed video camera and electrical signal analyses of arcs behavior in a 3-phase AC arc plasma torch[J]. Plasma Chemistry and Plasma Processing, 2013, 33(4): 779-796. [10] Rutberg P G, Kuznetsov V A, Serba E O, et al.Novel three-phase steam-air plasma torch for gasification of high-caloric waste[J]. Applied Energy, 2013, 108: 505-514. [11] Surov A V, Popov S D, Serba E O, et al.High voltage AC plasma torches with long electric arcs for plasma-chemical applications[J]. Journal of Physics: Conference Series, 2017, 825: 012016. [12] 张明, 王永兴, 田宇, 等. 气流场驱动下栅片中弧压提升特性的数值分析[J]. 电工技术学报, 2019, 34(13): 2752-2759. Zhang Ming, Wang Yongxing, Tian Yu, et al.Numerical analysis of arc voltage increasing characteristics in plate driven by airflow field[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2752-2759. [13] 盛德杰, 王尧, 邢云琪, 等. 基于磁流体动力学仿真的低压交流串联故障电弧致火风险研究[J]. 电工技术学报, 2025, 40(10): 3326-3338. Sheng Dejie, Wang Yao, Xing Yunqi, et al.Research on fire risk of low voltage AC series fault arc based on magnetohydrodynamics simulation[J]. Transa-ctions of China Electrotechnical Society, 2025, 40(10): 3326-3338. [14] 张在秦, 刘志远, 王闯, 等. 大电流真空电弧中阳极熔化过程的实验与仿真研究[J]. 电工技术学报, 2024, 39(7): 2143-2152, 2160. Zhang Zaiqin, Liu Zhiyuan, Wang Chuang, et al.Experimental and numerical study on anode melting in high current vacuum arcs[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2143-2152, 2160. [15] 薄祥来, 刘思远, 谢洪涛, 等. CuCr55电极触头真空电弧燃弧与烧蚀特性[J]. 高压电器, 2024, 60(4): 1-9. Bo Xianglai, Liu Siyuan, Xie Hongtao, et al.Vacuum arc ignition and ablation characteristics of CuCr55 electrode contacts[J]. High Voltage Apparatus, 2024, 60(4): 1-9. [16] 陈泽浩, 淡淑恒. 利用快速接地开关的开关柜故障电弧保护方法[J]. 高压电器, 2025, 61(7): 27-33, 43. Chen Zehao, Dan Shuheng.Fault arc protection method for switchgear cabinet using fast earthing switch[J]. High Voltage Apparatus, 2025, 61(7): 27-33, 43. [17] 李静, 易晨曦, 彭世东, 等. 高海拔环境下大容量直流空气断路器灭弧性能研究[J]. 电工技术学报, 2024, 39(3): 863-874. Li Jing, Yi Chenxi, Peng Shidong, et al.Study on interrupting characteristics of large capacity DC air circuit breaker at high altitude[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 863-874. [18] 牛博, 杨鼎革, 褚继峰, 等. 基于光学测量系统的高压断路器铜钨弧触头烧蚀特性研究[J/OL]. 高压电器, 1-8[2025-07-01]. http://kns.cnki.net/kcms/detail/ 61.1127.TM.20240905.1219.002. html. Niu Bo, Yang Dingge, Chu Jifeng, et al. Research on ablation characteristics of copper-tungsten arc contacts of high-voltage circuit breakers based on optical measurement system[J/OL]. High Voltage Apparatus, 1-8[2025-07-01]. http://kns.cnki.net/kcms/detail/61.1127. TM.20240905.1219. 002. html. [19] Fulcheri L, Fabry F, Takali S, et al.Three-phase AC arc plasma systems: a review[J]. Plasma Chemistry and Plasma Processing, 2015, 35(4): 565-585. [20] Takali S, Rohani V, Cressault Y, et al.3-D flow modeling of a three-phase AC plasma torch working with air using a stationary source domain with gas radiation[J]. IEEE Transactions on Plasma Science, 2016, 44(6): 996-1008. [21] Takali S, Fabry F, Rohani V, et al.Development of a 100 kW plasma torch for plasma assisted combustion of low heating value fuels[J]. Journal of Physics: Conference Series, 2014, 550: 012018. [22] Obraztsov N V, Subbotin D I, Popov V E, et al.Modelling of heating of plasma-chemical reactor in COMSOL multiphysics[J]. Journal of Physics: Conference Series, 2018, 1038: 012137. [23] 彭蠡, 王平阳, 王建维. 直流电弧等离子体炬的数值模拟[J]. 上海航天(中英文), 2023, 40(4): 73-79. Peng Li, Wang Pingyang, Wang Jianwei.Numerical simulation of DC arc plasma torch[J]. Aerospace Shanghai (Chinese & English), 2023, 40(4): 73-79. [24] 师浩阳, 王平阳, 王淑. 直流电弧等离子体炬数值模拟与诊断[J]. 上海航天(中英文), 2024, 41(1): 122-129. Shi Haoyang, Wang Pingyang, Wang Shu.Numerical simulation and diagnostic analysis on DC arc plasma torch[J]. Aerospace Shanghai (Chinese & English), 2024, 41(1): 122-129. [25] 陈伦江, 唐德礼, 程昌明, 等. 双阳极电弧等离子体炬的磁流体动力学分析[J]. 高电压技术, 2013, 39(7): 1724-1728. Chen Lunjiang, Tang Deli, Cheng Changming, et al.Magneto hydrodynamics analysis of a dual anode arc plasma torch[J]. High Voltage Engineering, 2013, 39(7): 1724-1728. [26] 胡明. 磁旋转直流电弧等离子体炬的实验研究[D]. 合肥: 中国科学技术大学, 2014. Hu Ming.Experimental study on magnetic rotation arc plasma torch[D]. Hefei: University of Science and Technology of China, 2014. [27] 查俊. 磁旋转电弧和分散电弧等离子体的实验研究[D]. 合肥: 中国科学技术大学, 2013. Zha Jun.The experimental study of the magnetically rotating arc and the dispersed arc plasma[D]. Hefei: University of Science and Technology of China, 2013. [28] 郭恒, 张晓宁, 聂秋月, 等. 亚大气压六相交流电弧放电等离子体射流特性数值模拟[J]. 物理学报, 2018, 67(5): 200-210. Guo Heng, Zhang Xiaoning, Nie Qiuyue, et al.Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet[J]. Acta Physica Sinica, 2018, 67(5): 200-210. [29] 方川, 张子明, 汪耀庭, 等. 六相交流放电再入飞行器热环境地面模拟研究[J]. 力学学报, 2023, 55(12): 2818-2834. Fang Chuan, Zhang Ziming, Wang Yaoting, et al.Ground simulation of thermal environment for reentry spacecrafts with a six-phase AC discharge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2818-2834. [30] 杜镇志, 陈雄, 周长省, 等. 基于不同湍流模型的电弧加热等离子射流数值模拟[J]. 真空科学与技术学报, 2015, 35(10): 1220-1224. Du Zhenzhi, Chen Xiong, Zhou Changsheng, et al.Numerical simulation of arc-heated plasma-jet based on well-recognized turbulence models[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(10): 1220-1224. [31] 罗仕超. 高超声速飞行器进气道磁控流动数值模拟研究[D]. 长沙: 国防科技大学, 2021. Luo Shichao.Numerical analysis of magnetofluid-dynamic control on the hypersonic inlet flow[D]. Changsha: National University of Defense Technology, 2021. [32] 西安交通大学. 气体放电等离子体基础数据库[DB/OL]. (2022-09-30)[2024-05-31]. http://plasma-data.net/index. [33] Nemchinsky V.On conductivity of cold gas layer separating arc column and nozzle in nontransferred plasma arc (anode reattachment process in plasma spray systems)[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2715-2720. [34] Nemchinsky V.Arc discharge anode reattachment: simple model[J]. IEEE Transactions on Plasma Science, 2014, 42(12): 4026-4030. [35] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟[J]. 物理学报, 2019, 68(18): 178-189. Yu Minghao.Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma[J]. Acta Physica Sinica, 2019, 68(18): 178-189. [36] Zhukov M F, Zasypkin I M.Thermal Plasma Torches: Design, Characteristics, Application[M]. Cambridge: Cambridge International Science Publishing, 2007.